

### **Solutions for Fluid Technology**



# VSE HIGH PRECISION FLOW MEASUREMENT TECHNOLOGY

# E FLUID TECHNOLOGY – YOUR COMPETENT VSE PARTNER

E Fluid Technology (Shanghai) Co., Ltd. is a subsidiary of the German e.holding company group. We supply and distribute flow meters, instrumentation, specialist pumps, and magnetic couplings of the German quality brands VSE, DST and Beinlich on the Chinese market.

# VSE HIGH PRECISION FLOW MEASUREMENT TECHNOLOGY

VSE is a leading international manufacturer of flow measurement technology. VSE develops and produces flow meters for virtually all pumpable media and the corresponding evaluation devices. Whether for water or highly viscous adhesive media with filler material, the VSE in-house development and design department produces technically sophisticated flow meters.

# SOLUTIONS IN COOPERATION WITH THE CUSTOMER

Most of the VSE output is tailored to customer requirements, thereby putting handcraft back into industry. VSE can utilise modular systems that are adjusted in line with the technical specifications for each individual order and needs of the customer. Our clients benefit from our technical know-how and from a close cooperation throughout all stages of planning and production. We support your projects optimally through our comprehensive application and material knowledge. We have a suitable solution for almost every requirement.

#### FLOW METERS FOR VARIOUS APPLICATIONS

VSE flow meters are used primarily where it is critical to have an accurate measurement possible. VSE flow measurement technology is used worldwide in high-tech processing plants in the plastics, polyurethane, chemical, pharmaceutical, paint and varnish, hydraulic and automobile industries, as well as in 2-component technology.

#### **QUALITY PRODUCTS AND EXCELLENT SERVICE**

E Fluid Technology, based in Shanghai and Guangzhou, is your local partner for VSE standard flow meters as well as customer-specific innovations. We provide distribution, application expertise, quality service and technical support. We work closely with the customers from the initial inquiry stage onwards and can provide innovative solutions for demanding applications.

We have a wealth of experience in helping you choose effective solutions for your application along with excellent technical knowledge and support. We also offer a competitive calibration and repair service with our own test stand. Our friendly team is always on hand to deal with your inquiry.

The current publication of this catalogue supersedes all information from previous publications. VSE reserves the right to make changes and substitutions. VSE is not liable for any printing errors. Reproduction, including excerpts, is permitted only after written approval by VSE. VSE reserves the right to modify technical data at any time. Last revised: 06/2021

HELICAL SCREW FLOW METER RS



4

24

GEAR FLOW METER VHM

GEAR FLOW METER **VS** 

52

GEAR FLOW METER **VSE EF ECOFLOW** 68









#### **RS FLOW METER**

RS flow meters measure the flow rate based on the screw pump principle. A pair of rotors fitted precisely into the housing constitutes the measuring element. An integrated gear and non-contact signal pick-up system detects the rotations of the measuring element and converts them to digital pulses.

Together with the housing walls, the rotor edges form closed measuring chambers in which the fluid is transported from the inlet to the outlet side.

The fluid volume put through within one main rotor rotation is the rotation volume, which is divided by the sensing gear and digitised, processed and output in the sensor module.

#### **ADVANTAGES**

High degree of precision that is mostly independent of viscosity

Pulsation-free measurement with minimal shear

Lowest pressure losses

Short response time due to innovative rotor profile and reduced mass

Highest functionality due to intelligent sensor technology

#### **FLOW METER SELECTION**

For the trouble-free, safe and reliable operation of the flow meters, selecting the correct type and size is critical. Because of the wide variety of applications and flow meter designs, the technical data in the VSE catalogue are of a general nature.

Certain properties of the devices depend on type, size, and measurement range as well as the liquid to be measured. Please contact VSE or one of our sales and service representatives for detailed information about the appropriate flow meter for your particular application.

#### SENSOR SYSTEM EXPLANATION

The non-contact pick-up system consists of two GMR-bridges (sin/cos), which are located in a sensor unit in cartridge design. It detects the movement of the sensing gear and routes the sin/cos-signals to the preamplifier electronics.

The preamplifier electronics digitise and amplify the sensor signals and multiply them by a high-resolution interpolator using adjustable settings. The square wave signals are bidirectional and can be utilised by any evaluating instrument as well as computers and PLC-controls.

The resolution is selectable in steps from factor 1 to 128.

In case of an 1-channel evaluation, a separate directional signal is available.

An adjustable pulse filter can offset and suppress negative flows (e.g. generated by vibrations) while still in the device.

The frequency of the output signals is proportional to the flow (volume flow) and depends on the respective flow meter size. The frequency range is from 0 to 100 kHz. The preamplifier is protected against reverse polarity and incorrect connection. It is suitable for fluid temperatures of -30°C to +120°C (-22°F to +248°F) (with HT sensor for a range of -40°C...+210°C (-40°F...+410°F)) and is mounted directly on the RS flow meter.

#### **TECHNICAL DATA OVERVIEW**

| Size    | Measurement<br>range<br>(Q <sub>max.</sub> ) I/min. | RV<br>ccm/<br>rev | VE<br>ccm/lmp. | K-Factor*<br>Imp./I<br>min. | K-Factor*<br>Imp./I<br>max. | P max.<br>bar | Filtering<br>my |
|---------|-----------------------------------------------------|-------------------|----------------|-----------------------------|-----------------------------|---------------|-----------------|
| RS 40   | 0.04 - 40 (50)                                      | 8.37              | 0.31           | 3,226                       | 413,000                     | 450           | 100             |
| RS 100  | 0.50 - 100 (120)                                    | 15.7              | 0.5815         | 1,720                       | 220,000                     | 450           | 250             |
| RS 400  | 1.00 - 400 (525)                                    | 56.6              | 3.138          | 318                         | 40,800                      | 450           | 250             |
| RS 800  | 4.00 - 800 (1.000)                                  | 180.0             | 10             | 100                         | 12,800                      | 450           | 500             |
| RS 2500 | 10.00 - 2,500 (3,000)                               | 666.0             | 37             | 27                          | 3,459                       | 40            | 500             |

<sup>\*</sup>adjustable

#### **FREQUENCY RANGE**

0 ... 100 kHz, adjustable

#### **MEASUREMENT ACCURACY**

up to 0.5% (1%)\*\* of measured value with viscosity of > 21 cSt.

#### REPEATABILITY ACCURACY

 $\pm$  0.05% with same operating conditions

\*\*RS 2500

#### **MATERIALS**

#### **GRAY CAST IRON MODEL**

EN-GJS-400-15 (EN 1563)/16 Mn Cr 5 or 1.4112 (depending on size)

#### STAINLESS STEEL MODEL

Stainless steel 1.4305/1.4112, additional available upon request

#### **BEARING**

Fluid-dependent as anti-friction bearing or SSIC/wolfram carbide friction bearing

#### **SEAL**

FPM (standard) PTFE, NBR, EPDM upon request

#### **FLUID TEMPERATURE**

-30°C ... +120°C (standard) -40°C ... +210°C (HT design)

#### **VISCOSITY RANGE**

1 ... 1.000.000 cSt.

#### **INSTALLATION POSITION**

Any, using selectable connection units, also customer specific

#### **SUPPLY VOLTAGE**

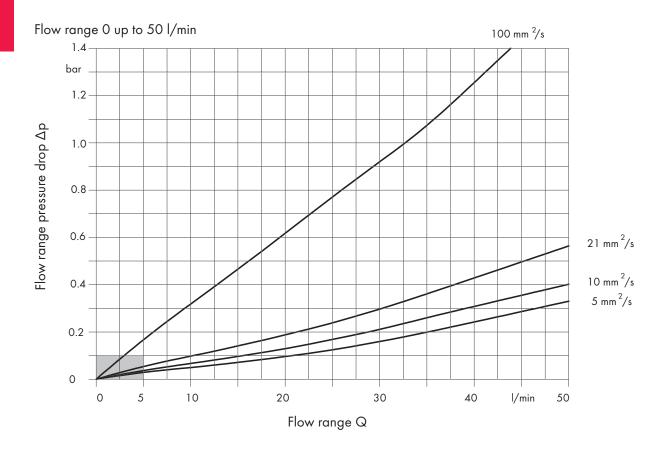
10 ... 28 VDC

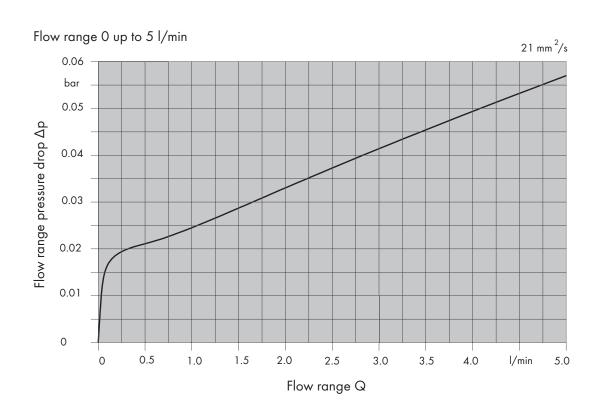
#### **CURRENT CONSUMPTION**

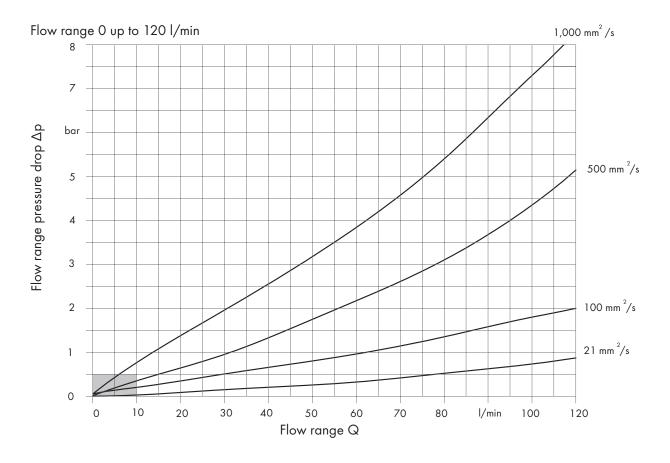
65 mA at 24 VDC unloaded

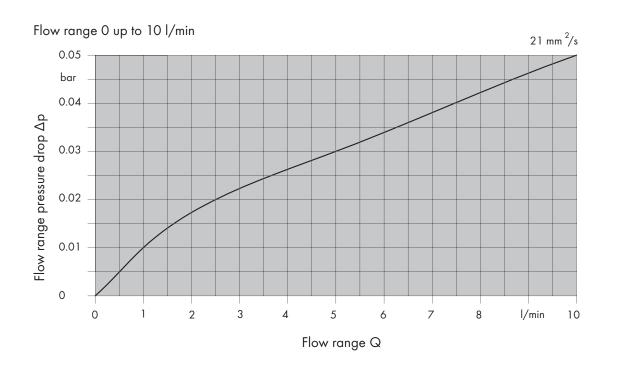
#### **DELAY**

≤ 8 µs

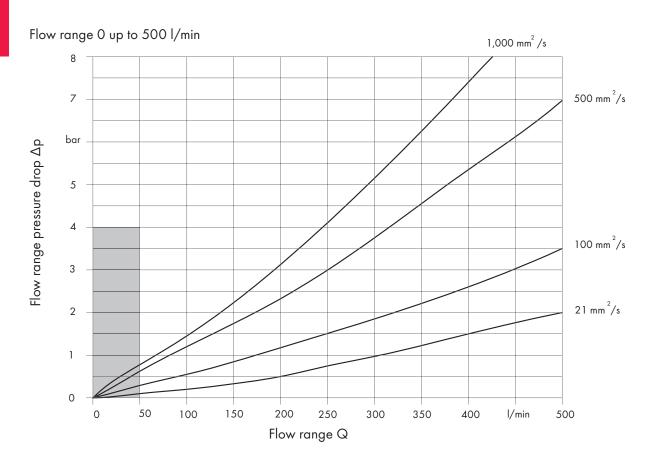

#### **PROTECTION CLASS**


IP 65

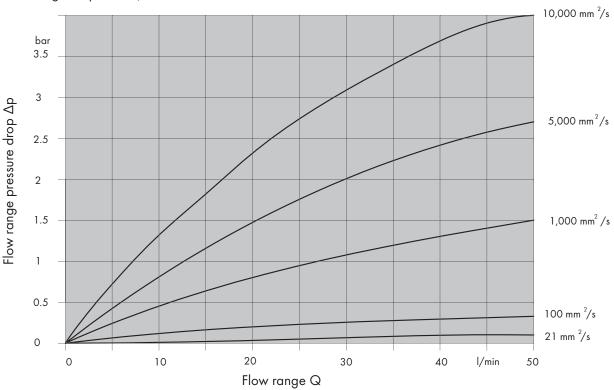

#### **EXPLOSION PROTECTION**


Protection type: intrinsically safe, available soon

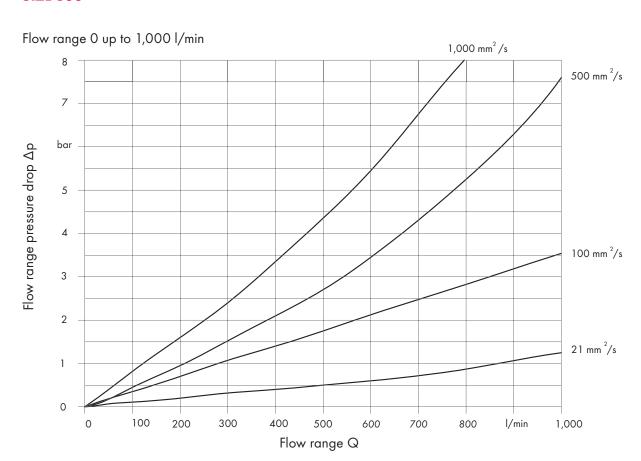
#### **FLOW RANGES**

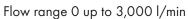


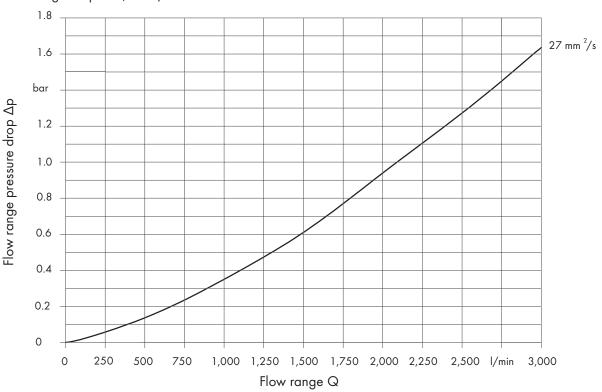




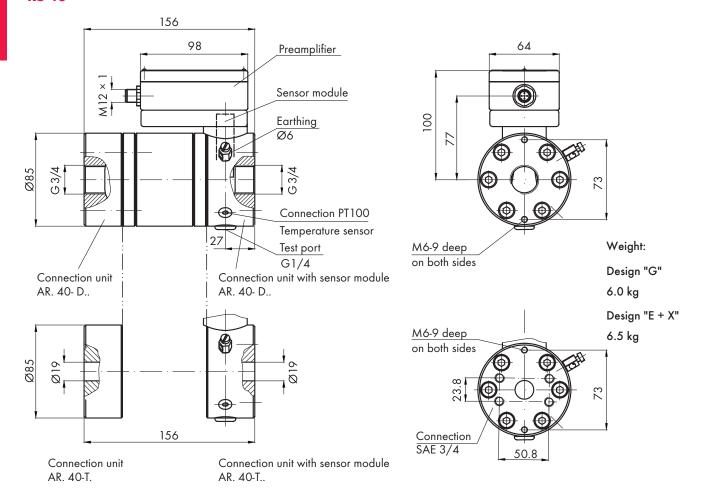


#### **FLOW RANGES**



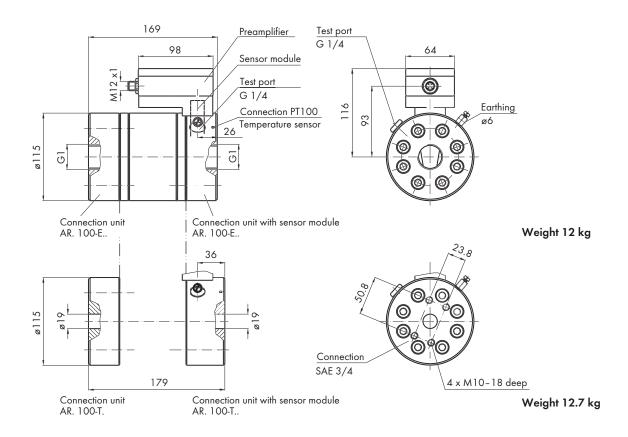





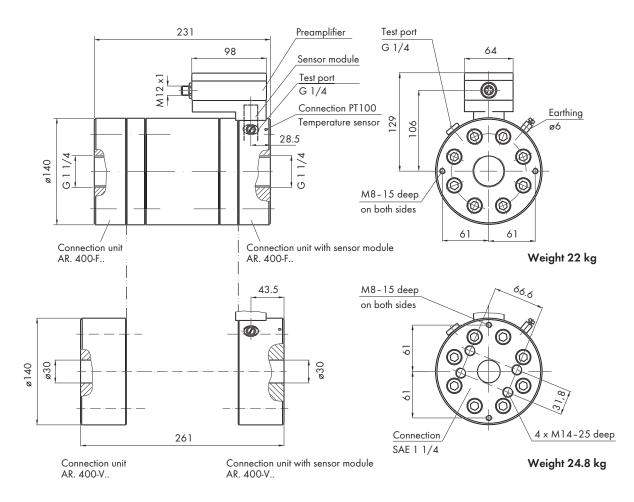

#### **SIZE 800**





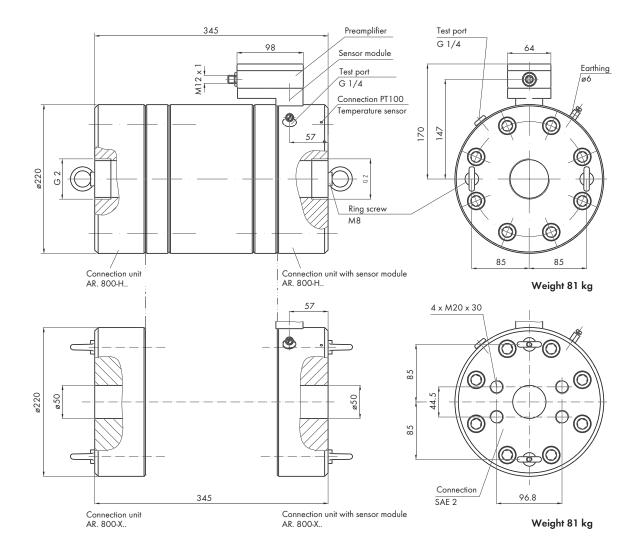




#### **DIMENSIONS**

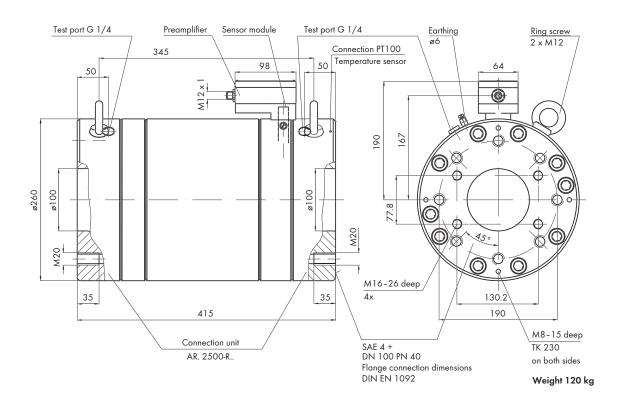

#### **RS 40**



#### **RS 100**




#### **RS 400**

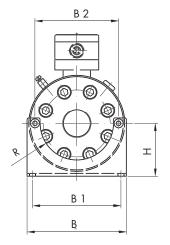


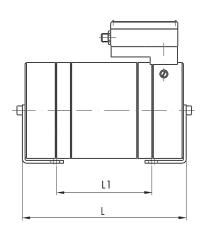

#### **DIMENSIONS**

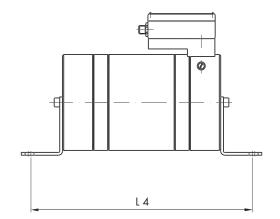

#### **RS 800**

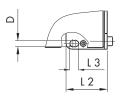


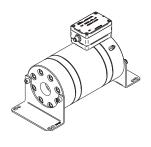
#### **RS 2500**

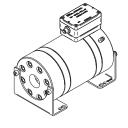


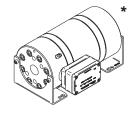


#### **RS** High temperature

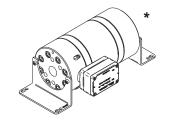




| Size       | Ø D | D 1                     | L                  | LI   | н     |  |
|------------|-----|-------------------------|--------------------|------|-------|--|
| RS 40      | 85  | G 3/4                   | 156                | 27   | 78.5  |  |
|            |     | SAE 3/4                 | SAE 3/4 G 1 169 26 |      |       |  |
| RS 100 115 | 115 | SAE 3/4                 | 179                | 36   | 93.5  |  |
| RS 400     | 140 | G 1 1/4                 | 231                | 28.5 | 106   |  |
| NO 400     |     | SAE 1 1/4               | 261                | 43.5 |       |  |
| RS 800     | 220 | G 2                     | 345                | 57   | 147   |  |
| K5 600     | 220 | SAE 2                   | 343                | 37   | 147   |  |
| RS 2500    | 260 | SAE 4 +<br>DN 100 PN 40 | 415                | 84   | 167.5 |  |


#### **BRACKET CONNECTIONS RS**














\*Alternative bracket connections not available for all connection sizes

| Size    | Connection       | В   | B 1 | B 2 | R          | Н   | L   | L 1      | L 2 | L 3 | L 4     | D   |
|---------|------------------|-----|-----|-----|------------|-----|-----|----------|-----|-----|---------|-----|
| RS 40   | G 3/4<br>SAE 3/4 | 85  | 73  | 73  | 30.5       | 49  | 164 | 107-113  | 35  | 9.5 | 207-213 | 6.5 |
| RS 100  | G 1              | 120 | 104 | 100 | 41         | 64  | 177 | 97-105   | 50  | 13  | 241-249 | 9   |
| K3 100  | SAE 3/4          | 120 | 104 | 100 | 41         |     | 187 | 107-115  | 50  |     | 251-259 |     |
| RS 400  | G 1 1/4          | 145 | 129 | 122 | 53.5       | 77  | 239 | 139-147  | 60  | 13  | 323-331 | 9   |
| K3 400  | SAE 1 1/4        | 143 | 129 |     |            |     | 269 | 169-177  | 00  | 15  | 353-361 | 7   |
| RS 800  | G 2              | 225 | 209 | 180 | <i>7</i> 6 | 117 | 353 | 193-201  | 90  | 13  | 497-505 | 9   |
| K3 000  | SAE 2            | 223 | 209 | 100 | 70         | 11/ | 333 | 173-201  | 70  | 13  | 477-303 | 9   |
| RS 2500 | SAE 4 +          | 265 | 240 | 230 | 100        | 142 | 425 | 235-245  | 110 | 16  | 595-605 | 11  |
| 2000    | DN100 PN40       | 200 | 2-0 | 200 |            | 172 | 720 | 200 2-40 |     |     | 0,0 000 |     |

#### **SENSOR MODULE**

#### SENSOR ELECTRONICS DESCRIPTION

A special sensor system detects any movement of the pair of rotors or of the liquid column. For this purpose, a precision gear connected to a shaft of the rotor pair is scanned by a special magnetoresistive sensor. The scanning sensor includes two GMR-bridges (sin/cos) and is housed in a removable stainless steel cartridge case together with a signal conditioning and amplifier unit. The downstream electronics unit features a high-resolution sin/cos-interpolator, which is adjustable with ten different resolution factors. Furthermore, a programmable signal filter is available as well, which can offset unwanted negative pulse sequences up to an adjustable degree. In addition, a signal for a separate direction detection, e.g. in case of a 1-channel evaluation, is provided by the electronics. Optionally, this output can be used for the detection of excess flows and temperatures.

#### **FEATURES**

Adjustable interpolation factors IPF: 1, 2, 5, 10, 25, 32, 50, 64, 100, 128

Adjustable pulse filtering: up to 22 % of the rotation volume

Adjustable preferential direction for filtering processes

Generating frequencies up to 100,000 Hz

Output of a separate directional signal or error signal (selectable)

Automatic offset adjustment of the GMR-sensor-bridge (sinus, cosine)

Detection of stalled sensor or sensor faults/ magnet wheel damages

Flow overload detection with logging

Excess temperature detection with logging

Detection of exceeding the max. permissible highest frequency (> 100,000 Hz)

Readable error code LEDs

#### **POWER SUPPLY**

#### Supply voltage

U = 10 ... 28 VDC; reverse pole protection

#### **Current consumption**

 $I_0 = 65 \text{ mA (at 24 VDC)}$ ; unloaded

#### **Delay**

t<sub>v</sub> = 8 μs max. (between scanning and measured value)

#### **SIGNAL OUTPUTS**

#### **Output signal shape**

Quadrature signals
(A, B with 90° phase shift)

#### **Directional output**

Positive high (24 V); negative low (0.8 - 1 V)

#### **Error output**

Active high (24 V); inactive low (0.8 - 1 V)

#### Max. output frequency

100 kHz

#### Signal voltage output

(channel 1, channel 2, direc/err) V<sub>SS</sub> = 9 ... 27 VDC

#### Signal output current

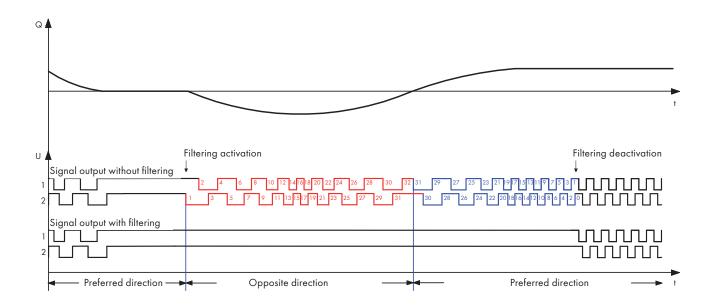
(channel 1, channel 2) I<sub>OUT</sub> = 300 mA max. at 24 VDC

#### **Output final stages**

Push-pull-final stages, current-limited, short-circuit proof, internal cable adjustment, small saturation voltage, thermal shutdown with hysteresis, high-impedance outputs in case of error

#### **SENSOR MODULE**

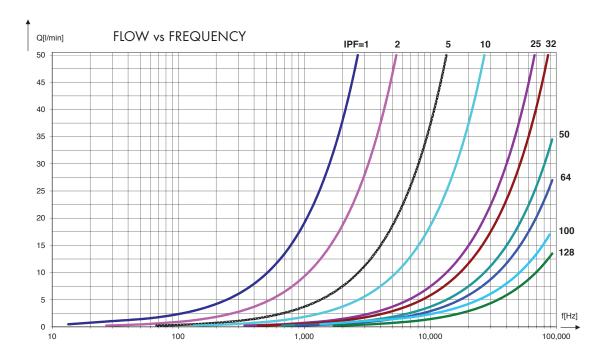
#### **PULSE FILTERING PRINCIPLE**


Oscillations in fluid systems manifest themselves through constant forward and backward movements of the liquid column, which is also detected by the rotor sensors and converted into proportional electronic pulses or edge sequences. These generated pulses can be incorrectly interpreted by the downstream evaluating unit or controller, which can be very distracting for the respective operating process.

The signal filtering function of the internal electronics continuously offsets these generated edges during the rapid forward and backward movements of the rotor measuring element. The signals at the channel outputs are also suppressed until the internal offset is equalized or the initial position of the rotor measuring element has been reached again.

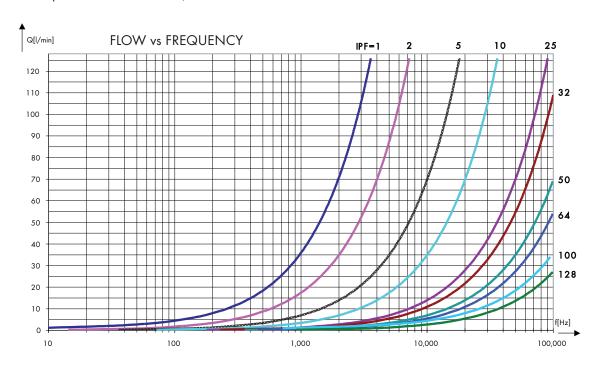
The user is able to set the degree of filtering in the form of partial volumes using rotary coding switches.

# SUPPRESSED VOLUME WITH PULSE FILTERING ACTIVATION [ml]


| Filter position | RS 40X | RS 100X  | RS 400X | RS 800X | RS 2500X |
|-----------------|--------|----------|---------|---------|----------|
| 0               | 0      | 0        | 0       | 0       | 0        |
| 1               | 0.0775 | 0.145375 | 0.7845  | 2.5     | 9.25     |
| 2               | 0.155  | 0.29075  | 1.569   | 5.0     | 18.50    |
| 3               | 0.2325 | 0.436125 | 2.3535  | 7.5     | 27.75    |
| 4               | 0.31   | 0.5815   | 3.138   | 10.0    | 37.00    |
| 5               | 0.3875 | 0.726875 | 3.9225  | 12.5    | 46.25    |
| 6               | 0.465  | 0.87225  | 4.707   | 15.0    | 55.50    |
| 7               | 0.5425 | 1.017625 | 5.4915  | 17.5    | 64.75    |
| 8               | 0.62   | 1.163    | 6.276   | 20.0    | 74.00    |
| 9               | 0.6975 | 1.308375 | 7.0605  | 22.5    | 83.25    |
| 10              | 0.775  | 1.45375  | 7.845   | 25.0    | 92.50    |
| 11              | 0.8525 | 1.599125 | 8.6295  | 27.5    | 101.75   |
| 12              | 0.93   | 1.7445   | 9.414   | 30.0    | 111.00   |
| 13              | 1.0075 | 1.889875 | 10.1985 | 32.5    | 120.25   |
| 14              | 1.085  | 2.03525  | 10.983  | 35.0    | 129.50   |
| 15              | 1.1625 | 2.180625 | 11.7675 | 37.5    | 138.75   |



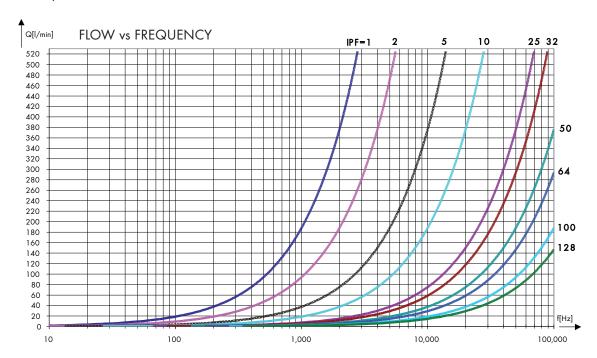
#### **TECHNICAL DATA**


RS 40

Max. permissible flow 40 l/min Min. permissible flow 0.04 l/min

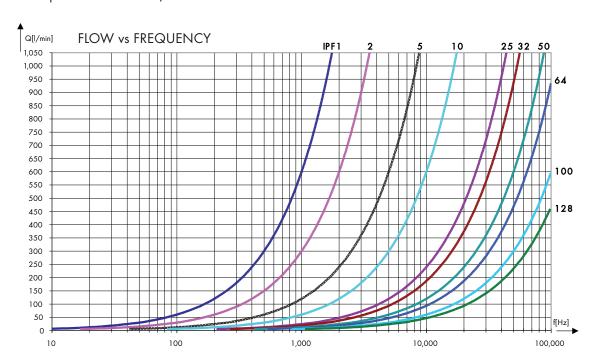


**RS 100** 


Max. permissible flow 100 l/min Min. permissible flow 0.25 l/min

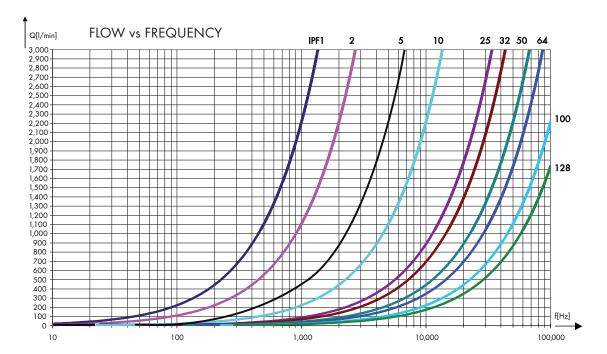


#### **TECHNICAL DATA**


**RS 400** 

Max. permissible flow 400 l/min Min. permissible flow 0.5 l/min




#### **RS 800**

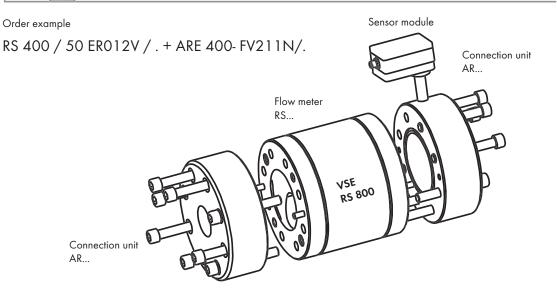
Max. permissible flow 800 l/min Min. permissible flow 5 l/min



RS 2500 Max. permissible flow 2,500 l/min

Min. permissible flow 10 l/min




#### **TYPE CODE**

| RS 800                                         | / | 50                                                 |  | G        | R               | 0                | 1                | 2            | ٧                     | -             | НТ                                                | /                  | Χ                                       | Flow meter | + |
|------------------------------------------------|---|----------------------------------------------------|--|----------|-----------------|------------------|------------------|--------------|-----------------------|---------------|---------------------------------------------------|--------------------|-----------------------------------------|------------|---|
|                                                |   |                                                    |  |          |                 |                  |                  | Sealing type |                       | TH Design     |                                                   | Construction range | Modification figure<br>Factory provided |            |   |
|                                                |   |                                                    |  |          |                 |                  | Bearing          | Backlash     | V<br>P<br>T<br>E<br>B |               | FPM (<br>NBR (<br>PTFE<br>EPDM<br>EPDM<br>Silicor | Perb<br>- 41       | unan)                                   |            |   |
|                                                |   |                                                    |  |          | <sub>0</sub>    | ovided           |                  | 2            |                       | Sta           |                                                   |                    |                                         |            |   |
|                                                |   |                                                    |  |          | Connection type | Factory provided | 1<br>4<br>6<br>7 |              | Hard                  | oear<br>I met | ing<br>ing – Lo<br>al sleev<br>contact l          | e be               | aring                                   |            |   |
|                                                |   | _                                                  |  | Material |                 | 0                | D. I.            | Stan         |                       |               |                                                   |                    |                                         |            |   |
|                                                |   | Interpolation                                      |  | G        | R               |                  |                  | ne co        |                       |               | 1563))                                            |                    |                                         |            |   |
|                                                |   | Interp                                             |  | Ε        |                 | Stain            | ess st           | eel          | 1.430                 | )5 (\         | √2A)                                              |                    |                                         |            |   |
|                                                |   | 1                                                  |  | X        |                 | Stain            | ess st           | eel          | 1.45/                 | ′ I (V        | (4A)                                              |                    |                                         |            |   |
| Size                                           |   | 2<br>5<br>10<br>25<br>32<br>50<br>64<br>100<br>128 |  | :        | Selec           | table            | interp           | olatic       | on faci               | tor           |                                                   |                    |                                         |            |   |
| RS 40<br>RS 100<br>RS 400<br>RS 800<br>RS 2500 |   |                                                    |  |          |                 |                  |                  |              |                       |               |                                                   |                    |                                         |            |   |

#### Example

Connection unit

| AR              | G           | 800                             | -       | G                | ٧                     | 2                              | 0                                                                                 | 0                                   | N                | /          | Χ                  |                     |                                                    |                    |                                                  |  |  |
|-----------------|-------------|---------------------------------|---------|------------------|-----------------------|--------------------------------|-----------------------------------------------------------------------------------|-------------------------------------|------------------|------------|--------------------|---------------------|----------------------------------------------------|--------------------|--------------------------------------------------|--|--|
|                 |             |                                 |         |                  | •                     | Jle                            | Test port                                                                         | O Connection for temperature sensor | Z Special design | l<br>Witho | Construction range | Fac<br>d<br>nnectio | dification figure<br>tory provided<br>n for PT 100 |                    |                                                  |  |  |
|                 |             |                                 |         |                  | a type                | Sensor module                  | Sensor modu                                                                       | Sensor modu                         | 0<br>1<br>2      |            | With               | out tes             | st port<br>est port                                | t G 1/             |                                                  |  |  |
|                 |             |                                 |         |                  | Sealing type          | 1 2                            | Sensor module CSM 01 No longer valid Sensor module GSM 02 + Sensor module RS / HT |                                     |                  |            |                    |                     |                                                    |                    |                                                  |  |  |
|                 |             |                                 |         | Connection       | V<br>P<br>T<br>E<br>B |                                | FPM (Viton) Standard NBR (Perbunan) PTFE EPDM EPDM - 41B8 Silicone                |                                     |                  |            |                    |                     |                                                    |                    |                                                  |  |  |
|                 |             | Size                            |         | D<br>E<br>F<br>G | (                     | 3/4<br>3 1<br>3 1 1,<br>3 1 1, | <b>/</b> 4                                                                        | H<br>I<br>R                         |                  | 100        | P16<br>PN40        | T<br>V<br>X<br>Y    | SAE 3/4<br>SAE 1 1/4<br>SAE 2<br>DN 20 PN10        | Z<br>Q<br>Q1<br>Q2 | SAE 4<br>DN 50 PN40<br>DN 80 PN40<br>DN 100 PN10 |  |  |
| unit            | Material    | 40<br>100<br>400<br>800<br>2500 | RS      |                  |                       |                                |                                                                                   |                                     | ~                |            |                    |                     |                                                    |                    |                                                  |  |  |
| Connection unit | G<br>E<br>X | Stain                           | less st | 00-15<br>eel     | .430                  | )5 (V                          | 2A)                                                                               | )                                   |                  |            |                    |                     |                                                    |                    |                                                  |  |  |





# GEAR FLOW METER VS

#### **VS POSITIVE DISPLACEMENT FLOW METERS**

#### **VS FLOW METER**

VS positive displacement flow meters are volume rate measuring sensors based on the meshing gear principle and are designed for use with liquids. Two precisely matched gear wheels are enclosed in a very accurately machined housing. Gear rotation is sensed by a non-contacting signal pick-up system. Each tooth produces one impulse.

The space between the gear teeth, when fully enclosed on both sides by the housing, constitutes measuring chambers. Fluid flow causes the gears to rotate and the incoming flow is separated into discrete volumes within these chambers i. e. the volume of liquid passing through the unit will cause rotation of the gears by exactly one tooth pitch.

This volume is known as the Volume/Impulse  $(V_m)$  and is stated in cc/Imp. It is used to define the size of a flow meter.

# EXPLANATIONS FOR PREAMPLIFIER OF SIGNAL PICK-UP SYSTEM

The non-contact pick-up sensors consist of two differential magneto resistors, which are circumferentially offset from one another by 1/4 of a tooth pitch. The signals of both pick-up sensors are digitised with two signal amplifiers and amplified via followed short circuit proof push-pull output stages.

The square wave output signals are bidirectional and may be simply processed by any external electronics, plc control or computer. The processing of the 90° phase angle between signals enables recognition of flow direction and impulse rate conversion with a factor of 1, 2 and 4.

The signal frequency is proportional to the momentary flow rate (volume rate) dependent on the particular flow meter size. The frequency range extends from 0 - 2000 Hz. The preamplifier is protected against reverse polarity and incorrect connection. For medium temperatures between -40°C and 120°C (-22°F and 248°F) the unit is mounted directly on the flow meter cover.

# SENSOR SYSTEMS FOR EXTENDED TEMPERATURE RANGE

For liquid temperatures from -40°C up to 210°C a special pick up system is available.

#### **VSI HIGH DEFINITION PREAMPLIFIER**

The VSI High Definition Preamplifier supplies digital signals with a higher resolution of the measured value. The high definition preamplifier is available in two versions.

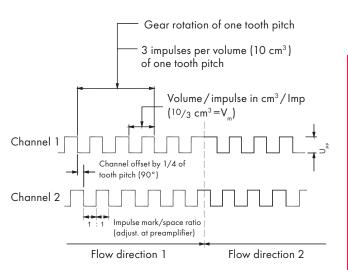
The first version has a selectable resolution between 4 and 64 angle steps which enables an increase of the K-factor by 16 or 64 with a flank evaluation. The other version offers more performance. A very big advantage is the compatibility. With this version, preamplifiers of the standard VS and the VSI series are interchangeable. The customer can therefore easily replace or upgrade a preamplifier himself. In addition, this preamplifier electronics offers an selectable resolution between 4 and 128 angular steps, which allows a maximum increase of the K-factor by 32 or 128 with a flank evaluation.

#### **EX-TYPES**

Intrinsically safe models, with approval code © II 1G Ex ia IIC T4-T6, are supplied for applications in potentially explosion-hazardous areas. VSE delivers these types with isolation switch amplifier models MK 13 P Ex 0/24 VDC/K15.

#### **VS FLOW METER SELECTION**

For trouble-free and safe operation of the flow meters the correct selection of type and size is decisive. Due to the great number of different applications and flow meter versions, the technical data in the VSE catalogues are of general character.


Certain characteristics of the devices depend on type, size and measuring range as well as on the medium to be measured. For exact flow meter selection please contact VSE.

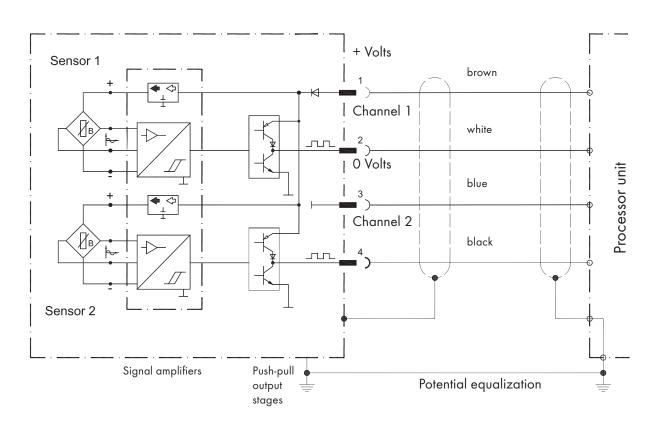
#### **OUTPUT SIGNALS OF PREAMPLIFIER**

#### FLOW METER VS 0.02... VS 4

# Channel 2 Channel 2 Impulse mark/space ratio | (adjust. at preamplifier) Flow in direction 1 Gear rotation of one tooth pitch One impulse rotation of one tooth pitch Channel of sear rotation of one tooth pitch One impulse in cm³/Imp Channel 2 Flow in direction 2

#### **FLOW METER VS 10**




#### **VOLTAGE RANGES**

Supply voltages:  $U_v = 10 \dots 28 \text{ V DC}$ Impulse voltages:  $U_{pp} = U_v - 1 \text{ V}$ 

#### **VOLTAGE RANGES**

Supply voltages:  $U_v = 10 ... 28 \text{ V DC}$ Impulse voltages:  $U_{pp} = U_v - 1 \text{ V}$ 

#### **BLOCK DIAGRAM**



#### RANGES OF APPLICATIONS

#### **APPLICATIONS**

All liquids that can be pumped and have known lubrication properties can be measured, for example: paraffin, kerosene, benzine, diesel, Skydrol, mineral oils, hydraulic oils including fire resistant fluids, inks, dyes and paints, greases, polyurethane, polyol and isocyanates, Araldite, glues, pastes and creams, resins, waxes and many others.

# RANGES OF APPLICATIONS IN THE AUTOMOTIVE INDUSTRY

Braking system test stands

Fuel consumption measurement

Polyurethane foams for steering wheels, fascia, seats etc.

Paint spraying systems

Steering systems

Batching and filling of motor oils, brake fluids, anti-freeze, corrosion preventatives, waxes etc.

Adhesive coatings for windscreens, headlights, engine housings etc.

#### **HYDRAULICS**

Volume and flow rate measurement

Leakage and rupture monitoring

Cylinder speed and position measurement

Positioning and step control

Measurement, control and regulation of flow rates and volumes

Test stands for pumps, motors, valves, proportionals and servo-valves

Synchronised multi-cylinder monitoring

Filling and additive blending

#### **DYES AND PAINTS**

Paint spraying systems

Batching and filling

Volume, flow rate and consumption

Monitoring of mixing ratios

#### **PLASTICS TECHNOLOGY**

Mixing, moulding and batching systems for single and multicomponent fluid plastics

Consumption measurement of e.g.:

Epoxy adhesives and potting compounds (resins and hardeners) for transformers, coils, relays, condensers, armatures, initiators, auto-electronics

Measuring, control and regulation of single components and mixing ratios

Silicon potting compounds

Polyurethane foams (polyol and isocyanate) for steering wheels, seals, shoes, soles, surf boards, furniture, computer casings, isolation etc.

Hot adhesive

#### **CHEMICAL INDUSTRY**

Flow rate and volume measurement in process plants and plant systems

Dosing and filling of chemical products such as liquid plastics, adhesives, resins, hardeners, potting compounds, solvents, fuels, foams, plasticisers, dyes and paints, oils and synthetic products etc., application in laboratories and manufacturing plants (in normal and explosion-hazardous areas)

Control and regulation of single components, mixing ratios and consumption of various components

Leakage measurement and leakage monitoring on plants

Measurement, indication and logging of data for product quality assurance

Special designs on request

#### **TECHNICAL DATA OVERVIEW**

| Size    | Flow range* | Flow range*  | K-factor | K-factor   | CALCULATION FACTOR                                                    |
|---------|-------------|--------------|----------|------------|-----------------------------------------------------------------------|
|         | I/min       | GPM          | Imp./I   | Imp./Gal.  | 1 litre = 0.26417 U.S. Gall                                           |
| VS 0.02 | 0.002 2     | 0.0005 0.53  | 50,000   | 189,272.00 | 1 U.S. Gallon = 3.78544 litre                                         |
| VS 0.04 | 0.004 4     | 0.0011 1.06  | 25,000   | 94,636.00  | 1 bar = 14.503684 psi<br>1 psi = 0.068948 bar                         |
| VS 0.1  | 0.01 10     | 0.0026 2.64  | 10,000   | 37,854.40  | 1 psi = 0.068948 bar                                                  |
| VS 0.2  | 0.02 18     | 0.0053 4.76  | 5,000    | 18,927.20  |                                                                       |
| VS 0.4  | 0.03 40     | 0.0079 10.57 | 2,500    | 9,463.60   | $^{\circ}C = 5 \times (^{\circ}F - 32)$ psi = pound-weig              |
| VS 1    | 0.05 80     | 0.0132 21.13 | 1,000    | 3,785.44   | 9 per square                                                          |
| VS 2    | 0.1 120     | 0.0264 31.70 | 500      | 1,892.72   | $^{\circ}F = 9 \times ^{\circ}C + 32 \text{ GPM} = \text{U.S.Gallon}$ |
| VS 4    | 1 250       | 0.2642 66.00 | 250      | 946.36     | 5 per minute                                                          |
| VS 10   | 1.5 525     | 0.39 138.00  | 300      | 1,135.63   |                                                                       |
|         | *at 21 cSt  | *at 21 cSt   |          |            |                                                                       |

| Accuracy              | up to 0.3 % of measured value at viscosity > 20 cSt |                                          |                                 |                                                 |  |  |  |  |
|-----------------------|-----------------------------------------------------|------------------------------------------|---------------------------------|-------------------------------------------------|--|--|--|--|
|                       | (< 20 cSt reduced o                                 | iccuracy)                                |                                 |                                                 |  |  |  |  |
| Repeatability         | ± 0.05 % under san                                  | ± 0.05 % under same operating conditions |                                 |                                                 |  |  |  |  |
| Materials             | Body                                                |                                          | Bearings                        | Seals                                           |  |  |  |  |
|                       | EN-GJS-400-15 (EN                                   | 1563)                                    | Ball / Plain / Plain            | FPM (standard)                                  |  |  |  |  |
|                       | Stainless Steel 1.43                                | 05                                       | (Copper-free)                   | NBR, PTFE, EPDM                                 |  |  |  |  |
|                       |                                                     |                                          | depend on liquid                |                                                 |  |  |  |  |
| Max. operating        | Cast iron                                           |                                          | Stainless steel                 |                                                 |  |  |  |  |
| pressures             | 315 bar/4,568 psi                                   |                                          | 450 bar / 6,526 psi             |                                                 |  |  |  |  |
| Medium temperature    | Standard                                            |                                          | -40 ≤ 120° C                    |                                                 |  |  |  |  |
|                       | Ex-design                                           | Ex-design                                |                                 | -20 ≤ 100° C (T4)                               |  |  |  |  |
|                       | High temperature                                    |                                          | -40 ≤ 210° C                    |                                                 |  |  |  |  |
| Viscosity ranges      | 1100,000 cSt                                        |                                          |                                 |                                                 |  |  |  |  |
| Mounting positions    | Unrestricted, on sub                                | plate with s                             | side or bottom connection       | ns                                              |  |  |  |  |
| Filtering             | VS 0.02/0.04/0.1                                    | 10 µm                                    | Exceptions                      |                                                 |  |  |  |  |
| for ball bearing type | VS 0.2/0.4                                          | 20 µm                                    | Elassa manata manatahan manatan | l ala ausar a a a a a a a a a a a a a a a a a a |  |  |  |  |
|                       | VS 1/2                                              | 50 µm                                    | Flow meters with specia         | i clearance on request.                         |  |  |  |  |
|                       | VS 4                                                | 50 µm                                    |                                 |                                                 |  |  |  |  |
| Noise level           | Max. 72 dB(A)                                       |                                          |                                 |                                                 |  |  |  |  |
| Preamplifier          | 10 to 28 Volt (DC)                                  |                                          |                                 |                                                 |  |  |  |  |

#### **VS 10 FLOW METER**

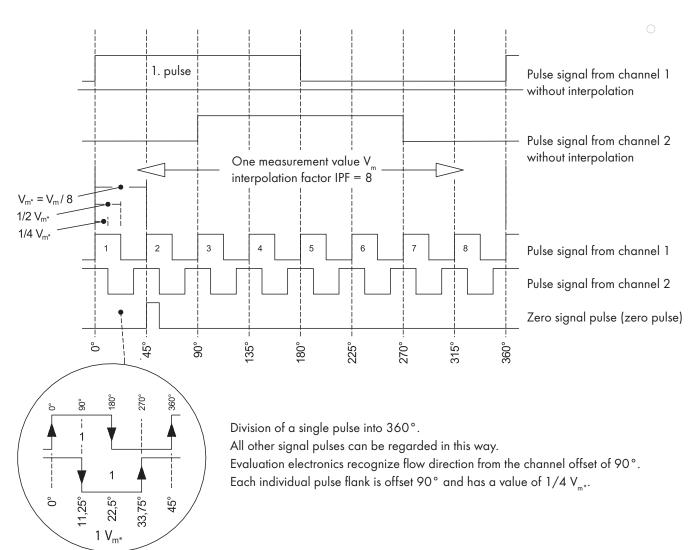
#### **TECHNICAL DATA**

|       | Flow range<br>I/min |               | K-Factor<br>Imp./I | Imp./Gal. |
|-------|---------------------|---------------|--------------------|-----------|
| VS 10 | 1.5 525             | 0.3963 138.69 | 300                | 1,135.63  |

| Accuracy           | up to 0.3 % of measured value at viscosity > 20 cSt (< 20 cSt reduced accuracy) |                                                   |                 |  |  |  |  |
|--------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-----------------|--|--|--|--|
| Repeatability      | ± 0.05 % under same operating conditions                                        |                                                   |                 |  |  |  |  |
| Materials          | Body                                                                            | Bearings                                          | Seals           |  |  |  |  |
|                    | EN-GJS-600-3                                                                    | Ball / Plain gearings                             | FPM (Standard)  |  |  |  |  |
|                    | EN 1563                                                                         | depend on liquid                                  | NBR, PTFE, EPDM |  |  |  |  |
| Max. operating     | 400 bar/6,000 psi                                                               |                                                   |                 |  |  |  |  |
| pressure           |                                                                                 |                                                   |                 |  |  |  |  |
| Medium temperature | Standard                                                                        | -40 ≤ 120° C                                      |                 |  |  |  |  |
|                    | Ex-design                                                                       | -20 ≤ 100° C (T4)                                 |                 |  |  |  |  |
|                    | High temperature                                                                | not available                                     |                 |  |  |  |  |
| Viscosity range    | 1 100,000 cSt                                                                   |                                                   |                 |  |  |  |  |
| Mounting positions | Unrestricted, on subplate                                                       | with side or bottom connect                       | ions            |  |  |  |  |
| Filtering          | 50 μm                                                                           | 50 µm                                             |                 |  |  |  |  |
| Preamplifier       | Short circuit proof and rev                                                     | erse polarity proof 10 28<br>al output max. 20 mA | 3 V DC / 45 mA, |  |  |  |  |

#### THE VSI HIGH DEFINITION PREAMPLIFIER

For precise and exact flow and volume measurements, it is necessary to increase the resolution as high as possible by resolving the measurement  $V_{\rm m}$ , even more than with conventional preamplifiers.


With the VSI-preamplifier versions a selectable resolution of up to 128 flanks (32 pulses) per period can be attained (see table below).

This means that you can resolve the volume measurement  $V_{\rm m}$  with this preamplifier to a maximum of  $1/128~V_{\rm m}$ .

For the evaluation, this means that a part volume of  $1/128~V_m$  from pulse flank to pulse flank (for quadruple evaluation or flank count) is measured, or a full signal pulse is counted as part volume of  $1/32~V_m$  (pulse count).

This individually programmed high resolution enables you to set the volume measurement  $V_m$  optimally for each provided case of application. Furthermore, new applications can be availed with the higher resolution

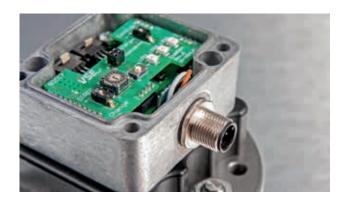
- Measuring, controlling and regulating in lower flow ranges
- · Measuring, controlling and regulating in zero flow
- Measuring, controlling and regulating in both flow directions
- Measuring, controlling, dosing and filling of small valumes



#### **TECHNICAL DATA OF VSI PREAMPLIFIER**

| Pickup sensor       | 2 x MR sensor (sine and cosine signals)                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of sensors   | Two pick up sensors for generating the sine and cosine signal                                                                                                                                                                                                                                                                                                                                                                                   |
| Adjustment          | Offset adjustment by two potentiometers                                                                                                                                                                                                                                                                                                                                                                                                         |
| Resolution          | Programmable in a range of 1 – 64 flanks per volume measurement V <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                  |
| Frequency           | Frequency multiplication: programmable in a range of 1 – 16 times the frequency of the                                                                                                                                                                                                                                                                                                                                                          |
|                     | pick-up sensors                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Output signals      | Channel A, channel B, zero channel Z                                                                                                                                                                                                                                                                                                                                                                                                            |
| Channel A and B     | Two signal outputs for emitting the digital flow sensor signals; between channel A and channel B there is a channel offset of 90°                                                                                                                                                                                                                                                                                                               |
| Flow direction      | Recognition of flow direction from channel offset of the signals from channel A to channel B                                                                                                                                                                                                                                                                                                                                                    |
| Zero signal Z       | Zero signal, marks the flow of one volume measurement V <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                            |
| Outputs             | 3 current limiting and short-circuit-proof push-pull output stages (channel A, channel B, zero signal Z); driver current approx. 300 mA at 24 V power supply; small saturation voltage up to 30 mA load current; short switching times; reverse voltage protection by integrated freerun diodes against V <sub>b</sub> and GND; temperature protection switching with hysteresis; outputs are of high impedance in case of error; ESD protected |
| Operating voltage   | V <sub>b</sub> = 10 28 VDC                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Current consumption | I <sub>no load</sub> = approx. 40 mA; total current consumption depending on loading of outputs                                                                                                                                                                                                                                                                                                                                                 |




# TECHNICAL DATA OF VSI PREAMPLIFIER – UPGRADE (HIGH PERFORMANCE)

| Pickup sensor       | 2 x MR-sensor (sine and cosine signals)                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Configuration       | automatically via peripheral board                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Resolution          | programmable 1, 2, 3, 4, 5, 8, 10, 12, 16, 24, 32                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Frequency           | up to 100kHz                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Output signals      | Channel A, channel B, direction signal "DIREC" (high positiv; low negativ)                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Channel A and B     | Two signal outputs for emitting the digital flow sensor signals; between channel A and channel B there is a channel offset of 90°                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Flow direction      | Recognition of flow direction from channel offset of the signals from channel A to channel B or from the separate direction signal on pin 5, direction can be changed by the preamplifier electronics                                                                                                                                                                                                                          |  |  |  |  |
| Outputs             | 3 current limiting and short-circuit-proof push-pull output stages (channel A, channel B, DIREC); driver current approx. 200 mA at 24 V power supply; small saturation voltage up to 30 mA load current; short switching times; reverse voltage protection by integrated freerun diodes against $V_b$ and GND; temperature protection switching with hysteresis; outputs are of high impedance in case of error; ESD protected |  |  |  |  |
| Error messages      | Electronics error (e.g. defective interpolator); sensor error(e.g. sensor break-off); configuration necessary; overload (flow peaks)                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Operating voltage   | V <sub>b</sub> = 10 28 VDC                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Current comsumption | I <sub>no load</sub> = approx. 65 mA; total current consumption depending on loading of outputs                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

#### **ADVANTAGES**

Easy replaceable, Upgrade for standard VS, higher resolution, more stability under harsh conditions





#### INTERPOLATION FACTOR AND RESOLUTION

| Interpolation<br>factor | Imp/V <sub>m</sub> | Max. resolution<br>(evaluation of<br>signal flanks) | Resolution V <sub>m</sub> .<br>(volume measure-<br>ment V <sub>m</sub> .) [ml] | Max. resolution<br>(angle degrees) | Frequency<br>f <sub>max</sub> , |
|-------------------------|--------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|---------------------------------|
| 1                       | 1                  | 4 (quadrupling)                                     | $V_{_{m}}$ / 4                                                                 | 90°                                | $f_{max} \times 1$              |
| 2                       | 2                  | 8                                                   | V <sub>m</sub> / 8                                                             | 45°                                | f <sub>max</sub> x 2            |
| 3                       | 3                  | 12                                                  | V <sub>m</sub> /12                                                             | 30°                                | $f_{max} \times 3$              |
| 4                       | 4                  | 16                                                  | V <sub>m</sub> /16                                                             | 22.5°                              | f <sub>max</sub> x 4            |
| 5                       | 5                  | 20                                                  | $V_m/20$                                                                       | 18°                                | $f_{max} \times 5$              |
| 8                       | 8                  | 32                                                  | V <sub>m</sub> /32                                                             | 11.25°                             | f <sub>max</sub> x 8            |
| 10                      | 10                 | 40                                                  | $V_m/40$                                                                       | 9°                                 | $f_{max} \times 10$             |
| 12                      | 12                 | 48                                                  | V <sub>m</sub> /48                                                             | 7.5°                               | f <sub>max</sub> x 12           |
| 16                      | 16                 | 64                                                  | V <sub>m</sub> /64                                                             | 5.625°                             | $f_{max} \times 16$             |
| 24*                     | 24                 | 96                                                  | V <sub>m</sub> /96                                                             | 3.75°                              | f <sub>max</sub> x 24           |
| 32*                     | 32                 | 128                                                 | V <sub>m</sub> /128                                                            | 2.8125°                            | $f_{max} \times 32$             |

<sup>\*</sup>Only VSI upgrade version

Column 1: Programmable interpolation factor IPF (programming is done in the factory)

Column 2: Pulses per volume measurement V<sub>m</sub>

Column 3: Maximum resolution of the signal flanks. The signal flanks channels 1 and 2 are evaluated

Column 4: Volume measurement  $V_{m^*}$  resulting from the maximum resolution of the signal flanks

Column 5: Maximum resolution in angle degrees at resolution of signal flanks

Column 6: Maximum frequency  $f_{max^*}$  at maximum flow  $Q_{max}$  and programmed interpolation factor IPF

In practice the maximum flow  $Q_{\text{max}}$  of the flow meter is seldom run so that a lower frequency can be calculated. The maximum frequency is then calculated according to the following formula:

$$f_{max}^{*} = \frac{(Q_{max})^* IPF}{V_{m}}$$
 formula 1

f<sub>max\*</sub>
Maximum frequency of the flow meter signals

Q<sub>max</sub>
Maximum flow attained in the case of application described here

IPF
Programmed interpolation factor

V
Volume measurement of the flow meter

**Example** Flow meter VSI 1/10... max. flow rate of the system at maximum capacity

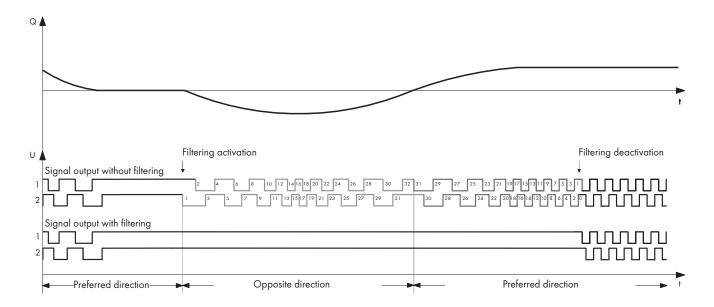
Q = 40 l/min = 666.667 ml/sec; IPF = 10;  

$$V_{m}$$
 = 1 ml/pulse;  $f_{max}^{*}$  = 6666.67 Hz  
= 6.66667 kHz

At max. flow<sub>max\*</sub> = 40 l/min, the flow meter VSI 1/10... outputs a frequency of

$$f_{max^*} = 6666.67 \text{ Hz}.$$

## VSI+ A FURTHER DEVELOPMENT OF THE VSI SERIES


Even more resolution, higher signal quality and more functions. The core components of the VSI+ transducer system are two magnetoresistive sensors, each embedded in a sturdy, compact plastics injected moulded part. Compared to the current system, these sensors are installed outside the flow through measurement chamber, so there is no longer any direct contact with the fluid. In combination with high performance pream-

plifier electronics, higher resolutions (IPF factors) are possible and frequency interferences independent of the flow are eliminated. A constant signal processing ensures the quality of the output impulses, even under difficult conditions like high temperatures or high load changes. A switchable impulse filter for a suppression of interfering pulsations in the fluid system and a direction switching have additionally been integrated.

#### **ADJUSTABLE INTERPOLATION FACTORS IPF**

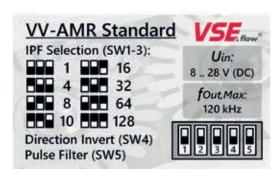
| Interpolation<br>factor | Imp/V <sub>m</sub> | Max. resolution<br>(evaluation of<br>signal flanks) | Resolution V <sub>m</sub> .<br>(volume measure-<br>ment V <sub>m</sub> .) [ml] | Max. resolution<br>(angle degrees) | Frequency<br>f <sub>max</sub> . |
|-------------------------|--------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|---------------------------------|
| 1                       | 1                  | 4                                                   | $V_{_{m}}$ / 4                                                                 | 90°                                | $f_{max} \times 1$              |
| 4                       | 4                  | 16                                                  | V <sub>m</sub> / 16                                                            | 22.5°                              | f <sub>max</sub> x 4            |
| 8                       | 8                  | 32                                                  | $V_{_{m}}/32$                                                                  | 11.25°                             | $f_{max} \times 8$              |
| 10                      | 10                 | 40                                                  | V <sub>m</sub> /40                                                             | 9°                                 | f <sub>max</sub> x 10           |
| 16                      | 16                 | 64                                                  | V <sub>m</sub> /64                                                             | 5.625°                             | $f_{max} \times 16$             |
| 32                      | 32                 | 128                                                 | V <sub>m</sub> /128                                                            | 2.8125°                            | f <sub>max</sub> x 32           |
| 64                      | 64                 | 256                                                 | V <sub>m</sub> /256                                                            | 1.40625°                           | $f_{max} \times 64$             |
| 128                     | 128                | 512                                                 | V <sub>m</sub> /512                                                            | 7.0.703125°                        | f <sub>max</sub> x 128          |

#### **SWITCHABLE PULSE FILTERING**



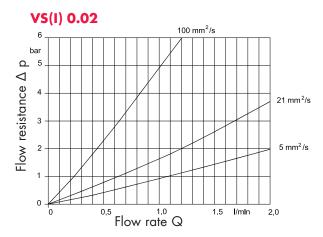
#### **FEATURES**

Switchable direction change Generating frequencies up to 120,000 Hz Easily interchangeable (automatic electronics configuration) Signal LEDs

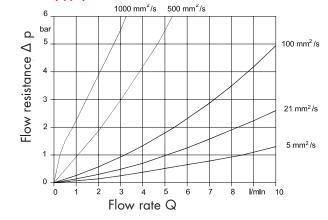

#### **TECHNICAL DATA OF VSI+ PREAMPLIFIER**

| Pickup sensor     | 2 x AMR-sensor (sine and cosine signals)                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Configuration     | automatically via peripheral board                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Resolution        | selectable 1, 4, 8, 10, 16, 32, 64, 128                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Frequency         | up to 120kHz                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Signal outputs    | Channel A, Channel B                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Channel A and B   | Two signal outputs for emitting the digital flow sensor signals; between channel A and channel B there is a channel offset of 90°                                                                                                                                                                                                                                                                                                 |  |  |
| Flow direction    | Recognition of flow direction from channel offset of the signals from channel A to channel B. On request also available with separate direction signal, direction can be changed by a switch of the preamplifier electronics                                                                                                                                                                                                      |  |  |
| Outputs           | 2 current limiting and short-circuit-proof push-pull output stages (channel A, channel B); driver current approx. 200 mA at 24 V power supply; small saturation voltage up to 30 mA load current; short switching times; reverse voltage protection by integrated free-run diodes against V <sub>b</sub> and GND; temperature protection switching with hysteresis; outputs are of high impedance in case of error; ESD protected |  |  |
| Error messages    | Electronics error (e.g. defective interpolator); sensor error(e.g. sensor break-off); configuration necessary                                                                                                                                                                                                                                                                                                                     |  |  |
| Operating voltage | V <sub>b</sub> = 8 28 VDC                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

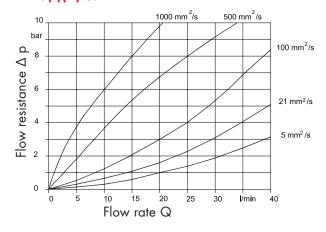
Current comsumption  $I_{no load}$  = approx. 40 mA (@24V DC); total current consumption depending on loading of outputs



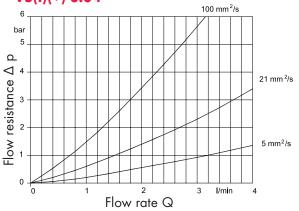

Preamplifer electronics



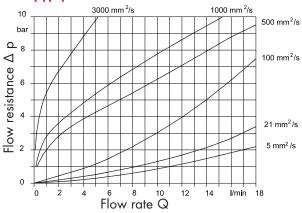

Settings


### **FLOW RESPONSE CURVES**

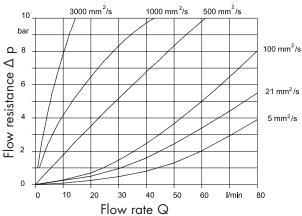



### VS(I)(+) 0.1



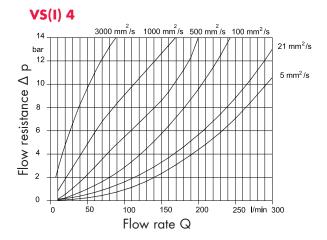

### VS(I)(+) 0.4



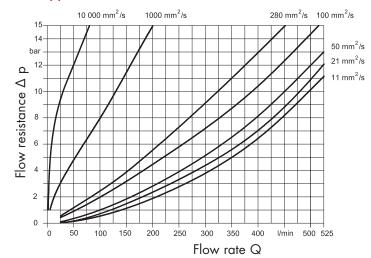

### VS(I)(+) 0.04



### VS(I)(+) 0.2



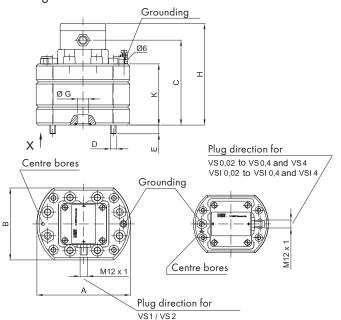

### VS(I)(+) 1




### **FLOW RESPONSE CURVES**

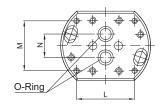





### **VS(I) 10**



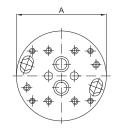
### VS(I)(+) FLOW METER DIMENSIONS VS(I) 0.02 ... VS(I) 4


### **CAST IRON VERSION**

Housing curve mill cutted



# CAST IRON VERSION CONNECTION DRAWING


View X

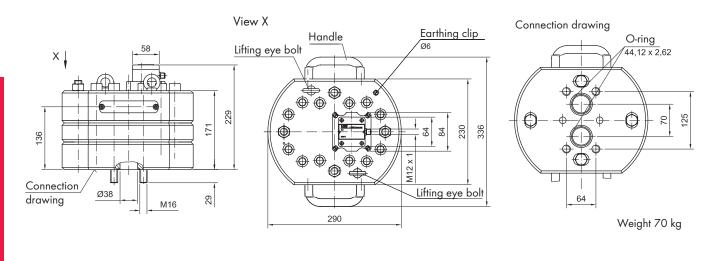


# STAINLESS STEEL VERSION CONNECTION DRAWING

Housing not mill cutted

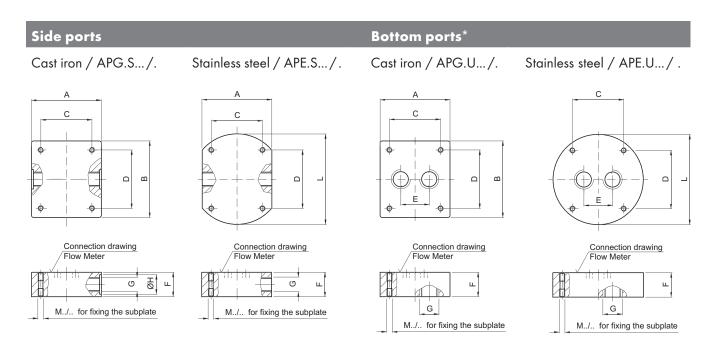
View X




| Size<br>VS/VSI | A   | В   | С    | D    | E    | ø G  | н     | К    | L  | м  | N  | <b>O</b> -l | Ring   | Wei<br>GG*<br>kg | ght<br>E**<br>kg |
|----------------|-----|-----|------|------|------|------|-------|------|----|----|----|-------------|--------|------------------|------------------|
| 0.02           | 100 | 80  | 91   | M 6  | 12   | ø 9  | 114   | 58   | 70 | 40 | 20 | 11          | x 2    | 2.8              | 3.4              |
| 0.04           | 100 | 80  | 91.5 | M 6  | 11.5 | ø 9  | 114.5 | 58.5 | 70 | 40 | 20 | 11          | x 2    | 2.8              | 3.4              |
| 0.1            | 100 | 80  | 94   | M 6  | 9    | ø 9  | 117   | 61   | 70 | 40 | 20 | 11          | x 2    | 2.8              | 3.4              |
| 0.2            | 100 | 80  | 93.5 | M 6  | 9.5  | ø 9  | 116.5 | 60.5 | 70 | 40 | 20 | 11          | x 2    | 3.0              | 3.7              |
| 0.4            | 115 | 90  | 96.5 | M 8  | 11.5 | ø 16 | 119.5 | 63.5 | 80 | 38 | 34 | 17.96       | x 2.62 | 4.0              | 5.0              |
| 1              | 130 | 100 | 101  | M 8  | 12   | ø 16 | 124   | 68   | 84 | 72 | 34 | 17.96       | x 2.62 | 5.3              | 6.8              |
| 2              | 130 | 100 | 118  | M 8  | 15   | ø 16 | 141   | 85   | 84 | 72 | 34 | 17.96       | x 2.62 | 6.7              | 8.4              |
| 4              | 180 | 140 | 143  | M 12 | 20   | ø 30 | 166   | 110  | 46 | 95 | 45 | 36.17       | x 2.62 | 14.7             | 18.4             |

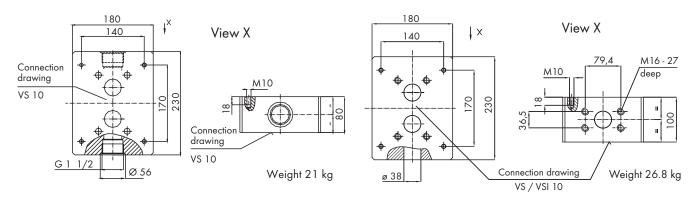
| Size |     |     |      |     |      |      |       |      |    |    |    |                |        | Wei       | ight      |
|------|-----|-----|------|-----|------|------|-------|------|----|----|----|----------------|--------|-----------|-----------|
| VSI+ | A   | В   | С    | D   | E    | øG   | н     | K    | L  | M  | N  | <b>O</b> -l    | Ring   | GG*<br>kg | E**<br>kg |
| 0.04 | 100 | 80  | 83   | M 6 | 11.5 | ø 9  | 106.5 | 58.5 | 70 | 40 | 20 | 11             | x 2    | 2.8       | 3.4       |
| 0.1  | 100 | 80  | 85   | M 6 | 9    | ø 9  | 108.5 | 61   | 70 | 40 | 20 | 11             | x 2    | 2.8       | 3.4       |
| 0.2  | 100 | 80  | 85   | M 6 | 9.5  | ø 9  | 108.5 | 60.5 | 70 | 40 | 20 | 11             | x 2    | 3.0       | 3.7       |
| 0.4  | 115 | 90  | 87.5 | M 8 | 11.5 | ø 16 | 111.5 | 63.5 | 80 | 38 | 34 | 17.96          | x 2.62 | 4.0       | 5.0       |
| 1    | 130 | 100 | 92   | M 8 | 12   | ø 16 | 115.5 | 68   | 84 | 72 | 34 | 1 <i>7</i> .96 | x 2.62 | 5.3       | 6.8       |
| 2    | 130 | 100 | 109  | M 8 | 15   | ø 16 | 132.5 | 85   | 84 | 72 | 34 | 17.96          | x 2.62 | 6.7       | 8.4       |

<sup>\*</sup>GG = Cast Iron EN-GJS-400-15 (EN 1563)


<sup>\*\*</sup> E = Stainless Steel 1.4305

### **DIMENSIONS VS(I) 10**




# Flow meter Subplate Subplate Subplate

### **AP SUBPLATE DIMENSIONS**

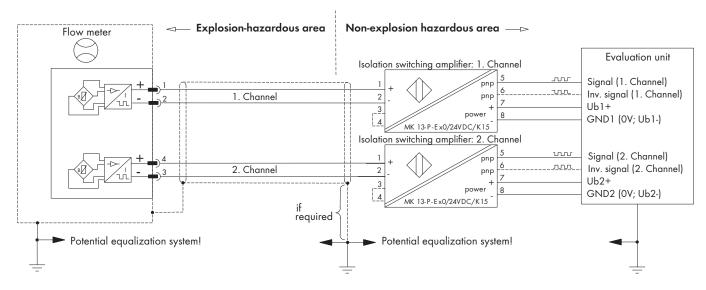


<sup>\*</sup> Both bottom ports (G) for size APG 4 U and APE 4 U have a displacement of 90° to the shown drawings.

### APG 10 S GON / 1



### Dimensions are specified in mm


|            | VS/VSI      |                | G       | F      | øΗ   | <b>E</b> ① |
|------------|-------------|----------------|---------|--------|------|------------|
|            | 0.02 / 0.04 |                | G 1/4   | 35     | ø 20 | 26         |
|            | 0.1 / 0.2   |                |         |        |      |            |
|            | 0.02 / 0.04 |                | G 3/8   | 35     | ø 23 | 30         |
|            | 0.1 / 0.2   |                |         |        |      |            |
| Affiliated | 0.02 / 0.04 | G pipe thread  | G 1/2   | 35     | ø 28 | 38         |
| size       | 0.1 / 0.2   | classification |         |        |      |            |
|            | 0.4 / 1 / 2 |                | G 1/2   | 35     | ø 28 | 46         |
|            | 0.4 / 1 / 2 |                | G 3/4   | 40     | ø 33 | 52         |
|            | 1 / 2       |                | G 1     | 55     | ø 41 | 55         |
|            | 4           |                | G 1 1/4 | 70     | ø 51 | 60         |
|            | 4           |                | G 1 1/2 | APU=70 | ø 56 | 72         |
|            | 4           |                | G 1 1/2 | APS=80 | ø 56 | 72         |

| Size                 | bize    |     |     |     |     |     |       |     |  |  |  |  |  |  |
|----------------------|---------|-----|-----|-----|-----|-----|-------|-----|--|--|--|--|--|--|
| VS/VSI               | AP      | A   | В   | С   | D   | L 2 | M     | kg  |  |  |  |  |  |  |
| 0.02/0.04<br>0.1/0.2 | AP.02   | 80  | 90  | 40  | 70  | 100 | M6/12 | 1.8 |  |  |  |  |  |  |
| 0.4                  | AP.04   | 90  | 100 | 38  | 80  | 115 | M8/15 | 2.7 |  |  |  |  |  |  |
| 1/2                  | AP.1    | 100 | 110 | 72  | 84  | 130 | M8/15 | 3.6 |  |  |  |  |  |  |
| 4                    | APG4    | 120 | 130 | 100 | 110 | -   | M8/15 | 7.4 |  |  |  |  |  |  |
|                      | APG4 UG | 140 | 120 | 120 | 100 | -   | M8/15 | 7.4 |  |  |  |  |  |  |
|                      | APE.4   | 140 | _   | 100 | 110 | 180 | M8/15 | 12  |  |  |  |  |  |  |

Special designs on request

① Only for APG.U .../.; APE.U .../. ② Only for APE.S .../.; APE.U .../.

### **VSE FLOW METERS IN EX-DESIGN/THE BARRIER AMPLIFIER**



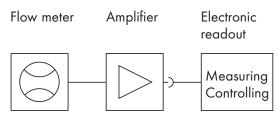
### **VSE FLOW METERS IN EX-DESIGN**

The VSE flow meters of the VS series in Ex-design are approved for applications in potentially explosion-hazardous areas and are always operated in conjunction with barrier amplifiers. They have blue markings and offer the necessary Ex-protection security. The type plate shows the necessary description according to DIN EN 60079, the type key and the safety-related and electric data. VSE can supply the flow meters with the barrier amplifiers type MK 13-P-Ex 0/24 VDC/K15.

# THE BARRIER AMPLIFIER MK 13-P-EX 0/24 VDC/K15

The barrier amplifier MK 13-P-Ex 0/24 VDC/ K15 enables an isolated transmission of binary switching status. It has an intrinsically safe control circuit and is certified according to E II(1) GD [EEx ia] II C.

There is a galvanic separation from the control circuit to the output circuit and to the power supply. For the transmission of two channels, two barrier amplifiers of this version are necessary. The control circuit can be monitored concerning wire breaking and short circuit (the monitoring can be switched off via a wire jumper).


An error in the control circuit stops the signal output. One pluse-switching short circuit proof transistor output (PNP-output) provides the digital signal of the connected channel.

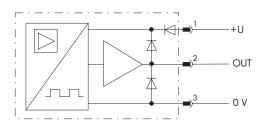
| Flow meter               | VSE connection cable, blue               | Barrier amplifier            |  |  |  |  |  |  |  |
|--------------------------|------------------------------------------|------------------------------|--|--|--|--|--|--|--|
| Type VS****-32 Q1*/*     | Shielded; 4 x 0.34 mm²                   | Type MK 13-P-Ex 0/24 VDC/K15 |  |  |  |  |  |  |  |
| BVS 05 ATEX E 071 X      | PUR                                      | PTB 06ATEX 2025              |  |  |  |  |  |  |  |
| ⑥    1G Ex ia    C T4-T6 |                                          |                              |  |  |  |  |  |  |  |
| $U_{i} = 18.5 \text{ V}$ | $R = 0.053 \Omega/m$                     | U <sub>0</sub> = 9,9 V       |  |  |  |  |  |  |  |
| I = 24 mA                | $L = 0.85  \mu H/m  (x)$                 | I <sub>o</sub> = 22 mA       |  |  |  |  |  |  |  |
| $P_i = 100 \text{ mW}$   | $C_{A-A} = 55 \text{ pF/m}  (x)$         | $P_o = 54 \text{ mW}$        |  |  |  |  |  |  |  |
| $R_i = 0$                | $C_{A-S} = 105 \text{ pF/m} \text{ (x)}$ |                              |  |  |  |  |  |  |  |
| $L_{i} = 0$              | [(x) = Measured at 1000 Hz]              |                              |  |  |  |  |  |  |  |
| $C_{i} = 0.27  \mu F$    |                                          | IIC IIB                      |  |  |  |  |  |  |  |
|                          |                                          | Lo/mH 1 5 10 2 10 20         |  |  |  |  |  |  |  |
|                          |                                          | Co/μF 1.1 0.75 0.65 5 3.5 3  |  |  |  |  |  |  |  |

| Temperature class   | T4                        |         | T5                                 | T6                                 |
|---------------------|---------------------------|---------|------------------------------------|------------------------------------|
| Ambient temperature | - $20$ °C ≤ $T_{amb}$     | ≤ 95°C  | $-20$ °C $\leq T_{amb} \leq 70$ °C | $-20$ °C $\leq T_{amb} \leq 55$ °C |
| Liquid temperature  | - 20°C ≤ T <sub>Med</sub> | ≤ 100°C | - 20°C ≤ T <sub>Med</sub> ≤ 75°C   | - 20°C ≤ T <sub>Med</sub> ≤ 60°C   |

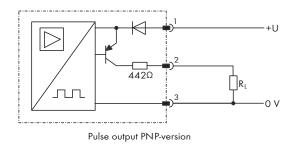
### PICK-UP SYSTEM FOR HIGH TEMPERATURE RANGES

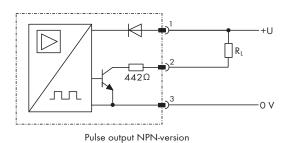





# OPTION FOR STAINLESS STEEL FLOW METERS VS 0.04 ... VS 4

The pick-up system consists of one or two sensor units, which are screwed into the cover of the VS flow meter and of a downstream switched amplifier. This amplifier is connected with the flow meter by means of a temperature resistant cable and has to be installed outside the high temperature area, where the ambient temperature should not exceed 50 °C.


The following pictures show the respective connection of the electronic readout.


For long cable lengths and high input impedance of the readout, it is recommended to use shielded cables.

### **CONNECTION DIAGRAMS**

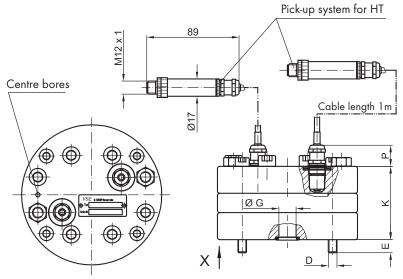


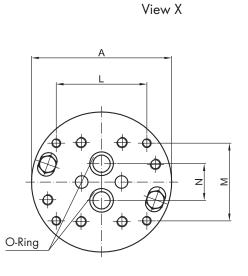
Pulse output PP-version





### **TECHNICAL DATA/FLOW METER DIMENSIONS**


### **TECHNICAL DATA: SENSOR UNIT**


| Medium temperature    | -40° C 210° C    |
|-----------------------|------------------|
| Number of pick-ups    | 1 or 2 pick-ups  |
| Pick-up               | Magnetoresistive |
| Electrical connection | cable gland      |
| Seals                 | FPM or EPDM      |

### **TECHNICAL DATA: AMPLIFIER**

| Supply voltage                  | $U_b = 10 30 \text{ V DC +/-10}\%$                                                                          |
|---------------------------------|-------------------------------------------------------------------------------------------------------------|
| Current consumption             | I <sub>b</sub> = approx. 18 mA (idle motion, without load)                                                  |
| Signal output PP<br>(Push-Pull) | High Sign.: $U_s = U_b - 1.5 \text{ V}$ ;<br>Low Sign.: $U_s = 0 \text{ V}$ ;<br>$I_s = 100 \text{ mA max}$ |
| Signal output PNP               | High sign: U <sub>S</sub> = U <sub>b</sub> -1 V; I <sub>S</sub> = 25 mA max                                 |
| Signal output NPN               | Low sign: $U_S = 0 \text{ V; } I_S = 25 \text{ mA max}$                                                     |
| Electrical connection           | 4 pin round plug M12                                                                                        |
| Max. ambient temperature        | -20°C 50°C                                                                                                  |
| Protection class                | IP 64                                                                                                       |

### FLOW METER DIMENSIONS





| Size     | A   | D    | E    | ø G  | К    | L  | М  | N  | Р  | O-Ring       | Weight<br>kg |
|----------|-----|------|------|------|------|----|----|----|----|--------------|--------------|
| VS 0.04* | 100 | M 6  | 11.5 | ø 9  | 58.5 | 70 | 40 | 20 | 22 | 11 x 2       | 3.5          |
| VS 0.1   | 100 | M 6  | 9    | ø 9  | 61   | 70 | 40 | 20 | 22 | 11 x 2       | 3.3          |
| VS 0.2   | 100 | M 6  | 9.5  | ø 9  | 60.5 | 70 | 40 | 20 | 22 | 11 x 2       | 3.6          |
| VS 0.4   | 115 | M 8  | 11.5 | ø 16 | 63.5 | 80 | 38 | 34 | 22 | 17.96 x 2.62 | 4.9          |
| VS 1     | 130 | M 8  | 12   | ø 16 | 68   | 84 | 72 | 34 | 22 | 17.96 x 2.62 | 6.7          |
| VS 2     | 130 | M 8  | 15   | ø 16 | 85   | 84 | 72 | 34 | 22 | 17.96 x 2.62 | 8.3          |
| VS 4     | 180 | M 12 | 20   | ø 30 | 110  | 46 | 95 | 45 | 12 | 36.17 x 2.62 | 18.3         |

<sup>\*</sup>Attention: 0.04 with one (1) channel only

### **TYPE KEY**

### **TYPE KEY FLOW METERS VS**

### **EXAMPLE**

| Н | T | Pick- | up sys | tem fo | or high | temp | erature ranges (210°C) signal output PNP or NPN |
|---|---|-------|--------|--------|---------|------|-------------------------------------------------|
|   |   |       |        |        |         |      |                                                 |
| Н | Т |       |        |        | /       | Х    |                                                 |

| VS 1                                                                              | G          | Р            | 0              | 1                                 | 2                                                      | V                | -                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                      | 1                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /             | Х                      | ]                                                                                                              |
|-----------------------------------------------------------------------------------|------------|--------------|----------------|-----------------------------------|--------------------------------------------------------|------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|----------------------------------------------------------------------------------------------------------------|
| VS 1                                                                              | G          | P            | 0              | Factory preset to the application | Instrument tolerance Factory preset to the application | V Type of seal   | FI<br>N<br>P'<br>E<br>E                                                          | S Pick-up system (V Pick-up system P | (iton) (i | tnd-tna Signal out-but | o 1 2 S pick-t pick-t Senso | diddin Single Si | on protection | x<br>SE 4<br>re-amited | No. factory preset  pole plug connection (Standard design)  plifier  D 28 V DC (Standard)  10 V DC (Ex-design) |
|                                                                                   |            | f connection | O Gear coating | 1 2 3 4 5                         | 1 2 3 4 E                                              | Ro<br>N          | educe<br>lorma<br>creas<br>oleran<br>aring<br>e bear<br>plain<br>plain<br>lain b | ed toler<br>l toler<br>ed tol<br>ace ste<br>ring<br>bear<br>n bea<br>earing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erance<br>rance<br>lerance<br>eel pla<br>ing<br>ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Stand                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |                                                                                                                |
|                                                                                   |            | Type of      | C              | D                                 | ynam                                                   | _                | ating (                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ace c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oating                 | <sub>3</sub> )              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |                                                                                                                |
|                                                                                   | ο Material | P<br>R       | Pl<br>Pi       | ate co                            | onstru<br>e conr                                       | ction<br>nection | ns                                                                               | -GJS-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) DIN                  | I EN 1                      | 563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                        |                                                                                                                |
| Size                                                                              | E<br>H     | S            | tainle         | ss stee                           | el 1.4                                                 | 1305             | (V2A                                                                             | .)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |                                                                                                                |
| VS 0.02<br>VS 0.04<br>VS 0.1<br>VS 0.2<br>VS 0.4<br>VS 1<br>VS 2<br>VS 4<br>VS 10 |            |              |                |                                   |                                                        |                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |                                                                                                                |

### **SUBPLATES AP**

### **SUBPLATES AP**

### **EXAMPLE**

| Α                  | Р | G        | 1    | _                                        | S               | С                 | 0                                         | N                | /       | X              |                      |  |  |
|--------------------|---|----------|------|------------------------------------------|-----------------|-------------------|-------------------------------------------|------------------|---------|----------------|----------------------|--|--|
|                    |   |          |      |                                          |                 | thread            | Accessory connection                      | Version          |         | X Product line | Modification Id. No. |  |  |
|                    |   |          |      |                                          |                 | Connection thread | Access                                    | N<br>S           | l .     |                | ard version          |  |  |
|                    |   |          |      |                                          |                 | Con               | 0                                         |                  |         |                | e connection         |  |  |
|                    |   |          |      |                                          |                 | Α                 |                                           | I<br>G 1/4       | VVILITO | 111130         | Connection           |  |  |
|                    |   |          |      |                                          |                 | В                 |                                           | G 3/8            |         |                |                      |  |  |
|                    |   |          |      |                                          |                 | С                 |                                           | G 1/2            |         |                |                      |  |  |
|                    |   |          |      |                                          |                 | D                 |                                           | G 3/4            |         |                |                      |  |  |
|                    |   |          |      |                                          |                 | Е                 |                                           | G 1              |         |                |                      |  |  |
|                    |   |          |      |                                          |                 | F                 |                                           | G 1 1/-          |         |                |                      |  |  |
|                    |   |          |      |                                          |                 | G                 |                                           | G 1 1/           | 2       |                |                      |  |  |
|                    |   |          |      |                                          |                 | J                 |                                           | 1/4 NF           | PΤ      |                |                      |  |  |
|                    |   |          |      |                                          |                 | K                 |                                           | 3/8 NF           | т       |                |                      |  |  |
|                    |   |          |      |                                          |                 | L                 |                                           | 1/2 NF           | PΤ      |                |                      |  |  |
|                    |   |          |      |                                          |                 | М                 |                                           |                  |         |                |                      |  |  |
|                    |   |          |      |                                          |                 | N                 |                                           | 1 NPT            |         |                |                      |  |  |
|                    |   |          |      |                                          |                 | 0                 |                                           | 1 1/4 1          |         |                |                      |  |  |
|                    |   |          |      |                                          |                 | Р                 |                                           | 1 1/2 1          | NPT     |                |                      |  |  |
|                    |   |          |      |                                          |                 | S                 |                                           | SAE 1            | /2      |                |                      |  |  |
|                    |   |          |      |                                          | <u></u>         | T                 |                                           | SAE 3            | /4      |                |                      |  |  |
|                    |   |          |      |                                          | ectic           | U                 |                                           | SAE 1            |         |                |                      |  |  |
|                    |   |          |      |                                          | conn            | ٧                 |                                           | SAE 1            |         |                |                      |  |  |
|                    |   |          |      |                                          | Side connection | W                 |                                           | SAE 1            |         |                |                      |  |  |
|                    |   |          |      |                                          |                 | Х                 |                                           | SAE 2            |         |                |                      |  |  |
|                    |   |          | Size |                                          | S               |                   |                                           | onnect<br>n conn |         |                |                      |  |  |
|                    |   |          | 0,2  |                                          | VS 0,0          | )2 to '           | VS 0,2                                    | ? / VS           | SI 0,02 | to VS          | SI 0,2               |  |  |
|                    |   |          | 0,4  |                                          |                 |                   | o VS 0,2 / VSI 0,02 to VSI 0,2<br>VSI 0,4 |                  |         |                |                      |  |  |
|                    |   |          | 1    | l                                        |                 |                   |                                           | 1 / V            | SI 2    |                |                      |  |  |
|                    |   | Material | 4    |                                          | VS 4            | / VSI 4           | 4                                         |                  |         |                |                      |  |  |
|                    |   | Mat      | 10   |                                          | VS 10           | / VSI             | 10                                        |                  |         |                |                      |  |  |
| ate                |   | G        |      |                                          |                 |                   |                                           | 0-15 I           | DIN EN  | N 1561         | / 1563               |  |  |
| Subplate           |   | Ε        |      |                                          | ess ste         |                   |                                           |                  |         |                |                      |  |  |
| $\square_{\infty}$ |   | Н        |      | EN-GJS-600-3 DIN EN 1563 (high pressure) |                 |                   |                                           |                  |         |                |                      |  |  |

### **TYPE KEY**

### TYPE KEY FLOW METERS VSI

### **EXAMPLE**

| VSI 1                                                                                      | / | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | G                                                           | Р                                                                                                                  | 0                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                  | ٧                                       | -                                               | 3                             | 2                           | W              | 1             | 5          | /                                        | Х                                                                     |                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|--------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------|-----------------------------|----------------|---------------|------------|------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |                                                                                                                    |                         | uc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factory preset to the application                                                                  |                                         |                                                 |                               | Quantity of pick-up sensors | t-1            | Pre-amplifier | Connection |                                          | X Product line                                                        | Nodification                                                                                                                                                                                                                                                                                                                    | Power supply volt.<br>on id. No.                                                                        |
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |                                                                                                                    |                         | Factory preset to the application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | reset to t                                                                                         |                                         |                                                 | system                        | of pick-u                   | Signal output  | Pre-a         | 5          |                                          |                                                                       | orm connection (<br>plug connection                                                                                                                                                                                                                                                                                             | •                                                                                                       |
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |                                                                                                                    |                         | to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctory p                                                                                            |                                         |                                                 | ick-up                        | vantity                     | iš             | 1             |            | Integr                                   | ated (                                                                | standard design)                                                                                                                                                                                                                                                                                                                |                                                                                                         |
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |                                                                                                                    |                         | preset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ß                                                                                                  | Φ                                       |                                                 | Sensor pick-up system         | Ø                           | W              |               | VV int     | . WE                                     | power                                                                 | supply volt. 10                                                                                                                                                                                                                                                                                                                 | 28 V DC)                                                                                                |
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |                                                                                                                    |                         | Factory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    | Seal type                               |                                                 | Š                             | 2                           |                | 2 Sen         | sors       |                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |                                                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rance                                                                                              | V                                       |                                                 | 3<br>FPM (                    | Viton)                      | GMR-<br>standa |               | or         |                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |                                                                                                                    |                         | earing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Instrument tolerance                                                                               | P<br>T<br>E<br>B                        |                                                 | NBR (<br>PTFE<br>EPD <i>N</i> | Perbui<br> <br> - 41B       | nan)           |               |            |                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |                                                                                                                    | Measuring wheel coating | Instrument bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>2<br>3<br>4                                                                                   |                                         | Norm<br>Incred                                  | ed tole<br>al tole<br>sed to  | erance<br>ance<br>leranc    | (stando        | ·             |            |                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             | f connection                                                                                                       | Measuring               | 1<br>2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                    | Spind<br>Bronz<br>Carbo                 | earing<br>le bea<br>e plair<br>on bea<br>bearin | rings<br>n beari<br>ırings    | ngs                         |                |               |            |                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         | <u> </u>                                                    | Type of                                                                                                            | O<br>C<br>T             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dynan                                                                                              | ating (<br>nat cod                      | ating (0                                        |                               | ng)                         |                |               |            |                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|                                                                                            |   | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | Material                                                    | P<br>R                                                                                                             |                         | Plate o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onstru                                                                                             |                                         |                                                 |                               |                             |                |               |            |                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
|                                                                                            |   | Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         | G<br>E<br>H                                                 |                                                                                                                    | EN-GJ<br>Stainle        | S-400<br>ess stee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -15 (V<br>el 1.4                                                                                   |                                         | EN-G<br>(V2A)                                   |                               |                             | DIN EN         | 1563          | 3          |                                          |                                                                       |                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |
| Size                                                                                       |   | 1<br>2<br>3<br>4<br>5<br>8<br>10<br>12<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for VSI 0.02 to VSI 4                                                   | 2 Imp<br>3 Imp<br>4 Imp<br>5 Imp<br>8 Imp<br>10 Im<br>12 Im | p. pro V, |                         | = V <sub>z</sub>   n | oro Imp<br>/ 2 pro<br>/ 3 pro<br>/ 4 pro<br>/ 5 pro<br>/ 8 pro<br>/ 10 pro<br>/ 12 pro<br>/ 16 pro | Imp. Imp. Imp. Imp. Imp. Imp. Imp. Imp. | •                                               |                               |                             |                |               |            | 6<br>9<br>0 12<br>15<br>24<br>2 30<br>36 | Imp. pr<br>Imp. pr<br>Imp. pr<br>Imp. p<br>Imp. p<br>Imp. p<br>Imp. p | $\begin{array}{ccccc} \text{OOV}_{z} & \text{V}_{m} = 10 / \\ \text{OOV}_{z} & \text{V}_{m} = 10 / \\ \text{TOOV}_{z} & \text{V}_{m} = 10 / \\ \end{array}$ | 3 pro Imp 6 pro Imp. 9 pro Imp. 12 pro Imp. 15 pro Imp. 24 pro Imp. 30 pro Imp. 36 pro Imp. 48 pro Imp. |
| VSI 0.02<br>VSI 0.04<br>VSI 0.1<br>VSI 0.2<br>VSI 0.4<br>VSI 1<br>VSI 2<br>VSI 4<br>VSI 10 |   | $\bigvee_{z}^{z} = \bigvee_{z}^{z} = \bigvee_{z$ | 0.02 m<br>0.04 m<br>0.1 m<br>0.2 m<br>0.4 m<br>1 m<br>2 m<br>4 m<br>0 m | <br> <br> <br> <br> <br> <br> <br>                          |                                                                                                                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |                                         |                                                 |                               |                             |                |               |            |                                          |                                                                       | olume (cm³)<br>s volume betweer                                                                                                                                                                                                                                                                                                 | n the gear teeth                                                                                        |

### **ELECTRONIC EVALUATION UNITS**

# FLOW RATE MEASURING INSTRUMENT MF1 FOR 2-CHANNEL FLOW SENSOR



Flow direction indication with switching output (0 V/5 V)

2 optocoupler limit value outputs, limit values are individually programmable

Analogue output with flow rate direction dependent voltage-/current-polarity is available

0 ... (±) 10 V

0 ... (±) 20 mA

4 ... 20 mA

A power supply for flow sensor is integrated 24 Volt DC/50 mA

### UNIVERSAL MEASURING INSTRUMENT VFM 320 FOR DYNAMIC PROCESS MEASUREMENTS AND CLOSED LOOP CONTROLS



Flow rate, volume and ratio measurements as well as measurement and control of volume-shots or mass-shots in 2-component mixing systems

Signal processing of 2 flow sensors with 2-channel signal outputs

2 independent dynamic analogue outputs with 16 Bit digital-analogue converter D/A-converter:

$$< 3 \text{ ms} (0 \text{ Hz} \rightarrow 2 \text{ kHz} \rightarrow 0 \text{ Hz})$$

The flow rate and volume values are direction dependent

or direction independent

(10 V 
$$\stackrel{\text{Flow in direction 2}}{\longleftarrow}$$
 0 V  $\stackrel{\text{Flow in direction 1}}{\longrightarrow}$  10 V)

Real time output of analogue and digital measurement values

PC-Interface 1 x RS 232, 2 x RS 485

Special designs on request

# FLOW RATE MEASURING INSTRUMENT A341-28



**DISPLAY A350-28** 



The evaluation electronics A341-28 simultaneously records two independent flows via flow meters and is suitable for incremental rotary transducers, proximity switches, etc.

Two individually scalable pulse inputs for 1, 2 or 4 tracks (A, /A, B, /B), suitable for input frequencies of 0.01 Hz to 1 MHz per channel

Single measurement, sum or differential measurement, ratio or percentage deviation, etc.

Linearisation function for each flow measurement

5 independent parameter sets presettable

14-bit analogue output;  $0/4 \dots 20$  mA,  $0 \dots 10$  V and -/+ 10 V; <1 ms reaction time

4 limit value settings with very fast responding transistor switch outputs

Programmable via an RS232 interface

2x encoder supply 24 VDC/120 mA

Standard housing 96 x 48 mm and protection class IP65

The A350-28 is a multifunctional device for flow and volume measurement.

Universal inputs (HTL/RS422) for encoders / VSE flow meters

186 x 64 pixel graphic display with touch function Bright, high-contrast display with result-based colour options

Emulation of a 7-segment display with symbols and units

Intuitive and easy parameterisation using plain text and touchscreen or via a RS232 interface

Auxiliary voltage output 5/24 VDC for encoder supply Input frequency up to 1 MHz

Linearisation with 24 support points

16 bit analog output 0/4 ... 20 mA, 0 ... 10 V and -/+ 10 V; 20 ms reaction time

Numerous functions such as scaling, filters, startup bridging

Standard installation housing with 96 x 48 mm and protection class IP65

### **ELECTRONIC EVALUATION UNITS**

### **SIGNAL CONVERTER FU210**



Operating modes as frequency converter or pulse counter

Conversion time only < 1 msec

16 Bit resolution (accuracy 0.1%)

Selectable analogue output: ±10 V, 0/4...20mA

Programmable linearisation with 24 points

6 control inputs and 6 control outputs

Power supply 18 ... 30 VDC

Easy parameterisation by user interface EASYLOADER or OS 6.0 via USB or RS232

### INSTRUMENTS FOR IMPULSE CONDITIONING

# FREQUENCY-/ANALOGUE CONVERTER DIGFU 1



Converter output signal for operation with 1-channel flow sensor

0 ... 10 V

0 ... 20 mA

4 ... 20 mA

Converter output signal with flow direction polarity for operation with 2-channel flow sensor

0 ... ± 10 V

 $0 ... \pm 20 \text{ mA}$ 

Evaluation of flow direction via digital output signal possible if a 2-channel flow sensor is connected

Proportional to flow frequency a digital output frequency signal with multiplier factor is adjustable

### SIGNAL CONVERTER PGW-1 FOR 2- OR 1- CHANNEL FLOW SENSORS TO CONVERT FLOW SENSOR OUTPUT SIGNALS INTO OTHER VOLTAGE LEVELS



For example: for chart recorder with impulse input, forward-/reversecounter, computer, PC- and PLC controls

Available output voltages:

TTL 5 V, 8 V, 12 V, CMOS 15 V

Power supply/current consumption:

10 ... 30 V DC, 20 mA without flow sensor

Inverted and non-inverted output signal for both channels integrated among other things for connection on differential count inputs to achieve a distortion-free signal transmission over long cable distances

### **BARRIER AMPLIFIER MK-13**



Economical interfaces with galvanic isolation between intrinsically safe and non-intrinsically safe circuits

Must be installed in the safe area

Are used to limit the electrical power into an intrinsically safe circuit in such a way that neither sparks nor thermal effects (hot surfaces) can cause an ignition

Connection diagram and exact type no. see page 42.





### **GEAR FLOW METER VHM SERIES**

We have developed a high precision flow meter for a wide variety of liquids, especially liquids with high abrasiveness and poor lubricity.

Applications include: chemical, petrochemical, pharmaceutical and cosmetic industry, two-component mixers, paints, aviation.

VHM flow meters are dead space optimised for use in the paint industry and for paint spraying systems (easy flushing). They are positive displacement units based on the meshing gear principle. Each tooth generates an impulse by recognition of the gear rotation by a non-contact detection system according to the carrier frequency principle.

VHM flow meters are available with single, double or quadruple resolution, signal-output with NPN- or PNP-switching mode.

Signal pick-ups with Ex-certification (Ex ia IIC T4 ... T6) and signal pick-ups with a fibre optic output are applicable for hazardous locations.

### **TECHNICAL DATA**

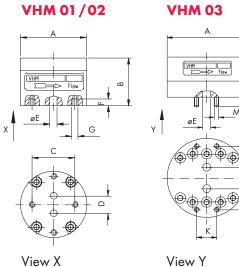
| Size     | Flow range    |             | K-factor Imp./I |                    |  |  |  |
|----------|---------------|-------------|-----------------|--------------------|--|--|--|
|          | I/min         | GPM         | Imp./I          | Imp./Gal.          |  |  |  |
| VHM 01-2 | 0.01 1 l/min  | 0.003 0.264 | approx. 22,000  | approx. 87,000     |  |  |  |
| VHM 02-1 | 0.05 2 l/min  | 0.013 0.528 | approx. 8,800   | approx. 33,311.872 |  |  |  |
| VHM 02-2 | 0.10 4 l/min  | 0.026 1.056 | approx. 4,400   | approx. 16,655.936 |  |  |  |
| VHM 02-3 | 0.40 81/min   | 0.106 2.113 | approx. 2,200   | approx. 8,327.968  |  |  |  |
| VHM 03-2 | 0.50 20 l/min | 0.132 5.283 | approx. 1,000   | approx. 3,785.44   |  |  |  |

| Materials |                                                                 |
|-----------|-----------------------------------------------------------------|
| Body      | Stainless steel 1.4404 (316)                                    |
| Gears     | Stainless steel 1.4462 (316)                                    |
| Bearings  | Tungsten carbide                                                |
| Seals     | FEP-FKM (standard)<br>NBR (upon request)<br>PTFE (upon request) |
| K-factor  | See calibration certificate for precise data                    |

Special designs and materials are available on request.

| Accuracy               | up to 0.5%<br>up to 1% | Viscosity > $10 \text{ mm}^2/\text{s}$<br>Viscosity $1 - 10 \text{ mm}^2/\text{s}$ |  |  |
|------------------------|------------------------|------------------------------------------------------------------------------------|--|--|
| Repeatability          | +/- 0.5‰               | Under same operating conditions                                                    |  |  |
| Max.operating pressure | 250 bar                | 3625 psi                                                                           |  |  |
| Medium<br>temperature  | -20<br>+120°C          | -4 +248°F                                                                          |  |  |
| Viscosity range        | 1 - 20.000 mr          | $m^2/s$                                                                            |  |  |
| Mounting positions     | ,                      |                                                                                    |  |  |

The installation into the pipe line can be made by means of a mounting plate or manifold.


### **APPLICATIONS**

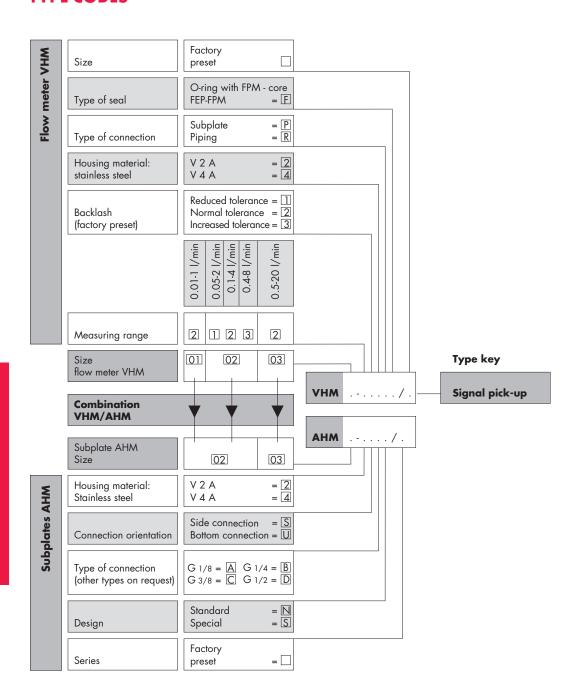
| Chemical industry       | $\longrightarrow$ | Continuous dosing                      |
|-------------------------|-------------------|----------------------------------------|
| Pharmaceutical industry | $\longrightarrow$ | Mixing, batching                       |
| Cosmetic industry       | $\longrightarrow$ | Dosing, batching                       |
| Dyes and paints         | $\longrightarrow$ | Flow control, consumption monitoring   |
| 2-Component mixers      | $\longrightarrow$ | Monitoring, regulation of mixing ratio |

### **DIMENSIONS**

### **FLOW METER DIMENSIONS**

| Size        | ØA | В  | С  | D  | ØE | F | G  | K  | L  | M  | н  | Weight<br>(kg) |
|-------------|----|----|----|----|----|---|----|----|----|----|----|----------------|
| VHM<br>01-2 | 68 | 29 | 44 | 18 | 5  | 6 | M6 |    |    |    |    | 0.760          |
| VHM<br>02-1 | 68 | 29 | 44 | 18 | 6  | 6 | M6 |    |    |    |    | 0.740          |
| VHM<br>02-2 | 68 | 34 | 44 | 18 | 6  | 6 | M6 |    |    |    |    | 0.860          |
| VHM<br>02-3 | 68 | 43 | 44 | 18 | 6  | 6 | M6 |    |    |    |    | 1.075          |
| VHM<br>03-2 | 99 | 50 |    | 27 | 10 |   |    | 25 | 81 | M6 | 12 | 2.700          |




|   | VHM 03               |   |
|---|----------------------|---|
|   | A -                  |   |
| Y | VISM TIDE            | В |
| - |                      |   |
|   | <del>- ``&gt; </del> |   |
|   |                      |   |

### **SUBPLATES DIMENSIONS**

| Туре        | A    | В  | С  | D  | E    | F  | G     | Н  | L      | M  | N  | P    | O-ring       |
|-------------|------|----|----|----|------|----|-------|----|--------|----|----|------|--------------|
| AHM 01 AN/. | ø 68 | 52 | 16 | 20 | ø 6  | 24 | G 1/8 | M6 | ø 11   |    |    |      | 7.65 x 1.78  |
| AHM 02 BN/. | ø 68 | 52 | 16 | 20 | ø 6  | 24 | G 1/4 | M6 | ø 11   |    |    |      | 7.65 x 1.78  |
| AHM 03 CN/  | ø 98 | 70 |    |    | ø 10 | 35 | G 3/8 | M6 | ø 15.5 | 25 | 81 | 13.5 | 12.42 x 1.78 |
| AHM 03 DN/  | ø 98 | 70 |    |    | ø 10 | 35 | G 1/2 | M6 | ø 15.5 | 25 | 81 | 13.5 | 12.42 x 1.78 |



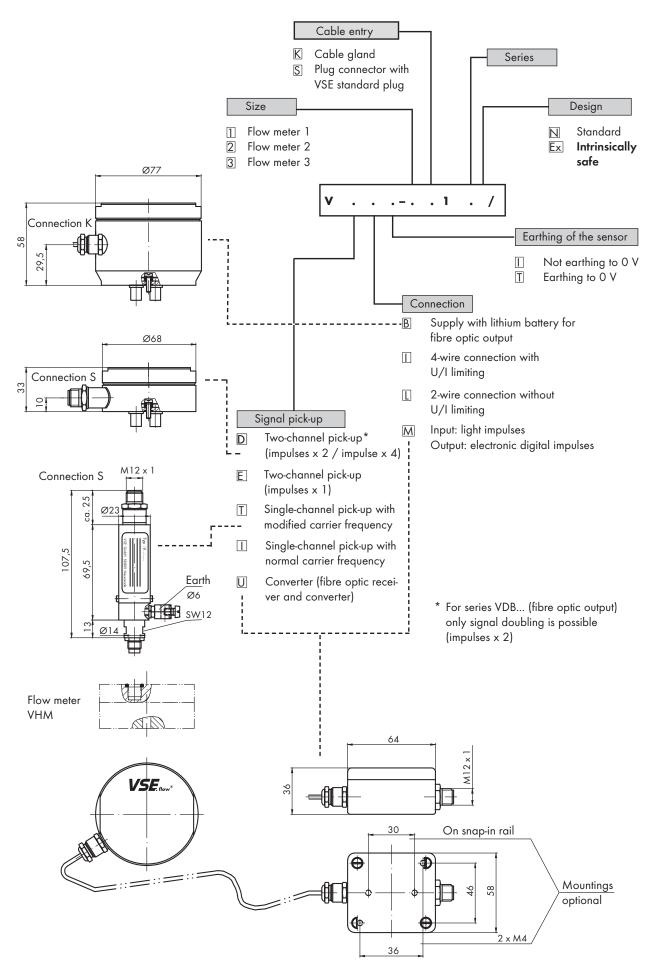
### **TYPE CODES**



### **GENERAL PRINCIPLE OF FUNCTIONING**

The two gear wheels of the instrument are set into motion by the volume flow passing through the flow meter. Each tooth of the gear wheel is scanned by a single or double signal pick-up, which is screwed to the flow meter.

When the gear wheel rotates, this signal pick-up generates an electrical output impulse, when a tooth of the wheel passes the scanning range.


Each conveyed tooth gap volume corresponds to one electrical output impulse for a single signal pick-up, or 2 or 4 electrical output impulses for a double signal pick-up, depending on the jumper coding. This volume

is enclosed between the tooth gaps of the wheel and the body and is conveyed to the outlet side by the rotation of the gear wheel. The volume conveyed out of a tooth gap is designated as the measuring volume  $V_{\scriptscriptstyle m}$ , which determines the significance of the impulses depending on the size of the flow meter.

### $V_m(I/Imp.) = 1/K-factor$

The frequency of the output impulse signal is processed in the associated electronic circuit and is proportional to the speed of rotation of the gear wheel and to the flow velocity. The flow quantity corresponds to the conveyed volume, which is measured by constant electronic counting of the output impulses.

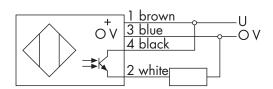
### **TYPE CODES - SIGNAL PICK-UP**



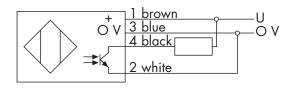
### **SELECTION CRITERIA – SIGNAL PICK-UPS**

|                                                                                                    | Single pick-ups<br>series VI / VT                                                                                                                                                                                                                                                                                                                                                                | Double pick-ups<br>series VD / VE                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General applications                                                                               | Flow velocity measurement and volume measurement                                                                                                                                                                                                                                                                                                                                                 | Flow velocity measurement and volume measurement with high signal resolution                                                                                                                           |
| Measured volume signal resolution per conveyed tooth gap volume                                    | 1 impulse/measured volume                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>a) 2 impulses/measured volume or<br/>4 impulses/measured volume<br/>optionally coded by jumpers in the<br/>pick-up</li> <li>b) 1 impulse/measured volume in<br/>modified series VE</li> </ul> |
| Galvanic isolation between<br>the supply voltage and the<br>signal output                          | NPN- or PNP-switching optocoupler output                                                                                                                                                                                                                                                                                                                                                         | NPN- or PNP-switching optocoupler output                                                                                                                                                               |
| When 2 single pick-ups<br>are used in one flow meter<br>body, the following<br>possibilities arise | <ul> <li>a) A high signal resolution and detection of the flow direction are possible with additional electronics</li> <li>b) Or it is possible to implement a redundant system for increased safety in conjunction with the separate operation of both pick-ups.</li> <li>c) Separate power supply of the single pick-ups from galvanically isolated power supply units is possible.</li> </ul> |                                                                                                                                                                                                        |
| EX-Design                                                                                          | With intrinsic safety only in conjunction with VSE barrier amplifier Ex-designation Ex ia IIC T4 T6                                                                                                                                                                                                                                                                                              | With intrinsic safety only in con-<br>junction with VSE barrier amplifier<br>Ex-designation Ex ia IIC T4 T6                                                                                            |

### VHM SINGLE PICK-UPS AND DOUBLE PICK-UPS IN STANDARD DESIGN


The single pick-up operates with a carrier frequency oscillator, which is modulated when a tooth passes. This modulation is detected by the amplifier and is used to generate one digital impulse per measured volume.

The double pick-up operates with two independent carrier frequency oscillators, which are modulated when a tooth passes. This modulation is detected by the amplifier and is used to generate 2 or 4 digital impulses per measured volume, which can be selected by the coding of the internal jumpers.


Single and double pick-ups are equipped with an optocoupler transistor output, which has a galvanic isolation between supply voltage and pick-up.

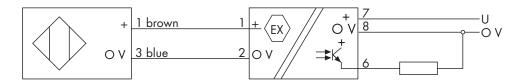
This transistor output can be connected with the supply voltage of the pick-up as shown in the below connection diagrams or can be operated with a separate power supply. Depending on the polarity of the power supply to the transistor, either a PNP- or a NPN-switched output signal is generated.

### **OUTPUT SIGNAL PNP-SWITCHED**



### **OUTPUT SIGNAL NPN-SWITCHED**




### SINGLE PICK-UPS AND DOUBLE PICK-UPS IN EX-DESIGN

The single pick-up operates with a carrier frequency oscillator, which is modulated when a tooth passes. The double pick-up operates with two independent carrier frequency oscillators, which are modulated when a tooth passes.

This modulation is detected by the amplifier and is used to generate a pulsing current signal in the supply current. The connected barrier amplifier detects the signal and generates a digital PNP signal for further processing. The output impulses per measured volume correspond to those of the two standard designs.

Single pick-ups and double pick-ups in Ex-design are designed for intrinsic safety and may only be used in conjunction with the VSE barrier amplifier MK 13-P-Ex 0/24 V DC/K15.

The flow meter with the single pick-up or double pick-up is located in the hazardous area. The barrier amplifier is installed outside the hazardous area in an electrical cabinet or terminal box (snap-in mounted on an installation rail DIN 50022).



### DOUBLE PICK-UP WITH FIBRE OPTIC OUTPUT TYPE VDB...

| Applications under extremely difficult conditions                                        | Applications                                   | Measured volume signal resolution per conveyed tooth gap volume | Battery operation with energy saving circuit |
|------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|
| a) Environments with heavy     electromagnetic interference     b) High voltage areas    | In flow velocity measurement and volume measu- | 2 impulses/<br>measurement volume                               | 2 years of operation without battery change  |
| c) Rooms with explosion hazards, e.g. spray painting equipment with electrostatic charge | rement with high signal resolution             |                                                                 |                                              |

### DOUBLE PICK-UP WITH FIBRE OPTIC OUTPUT TYPE VDB...

The double pick-up converts electrical impulses into light impulses and transmits these through a plastic optical fibre to the receiver, which is installed away from the extreme conditions. This converts the light impulses of the signal pick-up back into electrical impulses and outputs them to electronic evaluation devices for further processing. The output signal of the fibre optic receiver has a resolution of 2 impulses per measured volume with a pulse duty factor of 1:1.

The signal frequency of the output impulses is proportional to the speed of rotation of the gear wheel and to the flow velocity and must be processed by the connected electronic readout according to the values of the impulses.

The output impulses of the fibre optic receiver can be either a PNP- or a NPN-switched signal. The coding of the signals is easily possible and is performed on 2 separately programmable jumper bars in the receiver.

### 

### **SIGNAL PICK-UPS FOR VHM FLOW METERS**

| Technical data part 1                                                    | Single pick-ups in<br>standard design<br>Deviations from Ex-design                               | Double pick-ups in standard design Deviations from Ex-design               |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Signal pick-ups per flow meter                                           | 1 or 2                                                                                           | 2 (1 active carrier frquency oscillator in Series VE*)                     |
| Detection of direction of flow meter                                     | Yes, by 2 signal pick-ups with a phase offset <sup>1</sup> of 90° mounted on one flow meter body | No                                                                         |
| Body data                                                                |                                                                                                  |                                                                            |
| Dimensions                                                               | Ø = 25 mm; length = 115 mm                                                                       | $\emptyset$ = 68 mm; length = 33 mm;<br>overall length with sensor = 43 mm |
| Protection type                                                          | IP 54                                                                                            | IP 54                                                                      |
| Material                                                                 | Stainless steel                                                                                  | Anodised aluminium, coil holder in stainless steel                         |
| Weight                                                                   | 100 g                                                                                            | 165 g                                                                      |
| Medium temperature                                                       | -20 + 120°C / -4 +248°F<br>Ex-Design: -20 +80°C /<br>-4 +176°F                                   | -20 +120°C / -4 +248°F<br>Ex-Design: -20 +80°C /<br>-4 +176°F              |
| Ambient temperature                                                      | -20 +60°C / -4 +140°F<br>Ex-Design: - 20 +50°C /<br>-4 +122°F                                    | -20 +60°C / -4 +140°F<br>Ex-Design: -20 +50°C /<br>-4 +122°F               |
| Ex-approval                                                              | According to Conformity certificate BUS 05 ATEX E 121X                                           | According to Conformity certificate BUS 05 ATEX E 121X                     |
| Ex-designation                                                           |                                                                                                  | € II 1G Ex ia IIC T4T6                                                     |
| Ex-ignition suppression type in conjunction with specified VSE amplifier | Intrinsically safe MK 13-P-Ex 0/24 V DC/K15                                                      | Intrinsically safe MK 13-P-Ex 0/24 V DC/K15                                |
| Supply voltage U <sub>DC</sub>                                           | 10-30 V DC, see data sheet page 12                                                               | 110-30 V DC, see data sheet page 12                                        |

| VSE barrier amp                                                                      | lifier    |                                                                                                                                                               |                                                                                                                                                      |  |  |  |
|--------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Installation site                                                                    |           | Outside the Ex-area in an electrical cabinet or terminal box.  Mounted on installation rail  DIN 50022                                                        | Outside the Ex-area in an electrical cabinet or terminal box.  Mounted on installation rail  DIN 50022                                               |  |  |  |
| Electrical connection                                                                |           | Intrinsically safe control line according to design specifications VDE 0165                                                                                   | Intrinsically safe control line according to design specifications VDE 0165                                                                          |  |  |  |
| Supply Voltage                                                                       | Standard  | 7-30 V                                                                                                                                                        | 7-30 V                                                                                                                                               |  |  |  |
| U <sub>DC</sub> Ex-Design                                                            |           | 5-9 V (by specified VSE barrier amplifier)                                                                                                                    | 5-9 V (by specified VSE barrier amplifier)                                                                                                           |  |  |  |
| Supply current                                                                       | Standard  | 3 mA max.                                                                                                                                                     | 3 mA max.                                                                                                                                            |  |  |  |
| l <sub>DC</sub>                                                                      | Ex-Design | < 2.7 mA > 3.7 mA<br>(modulated current signal)                                                                                                               | < 2.7 mA > 3.7 mA<br>(modulated current signal)                                                                                                      |  |  |  |
| Connection                                                                           | Standard  | 4-wire plug connection                                                                                                                                        | 4-wire plug connection                                                                                                                               |  |  |  |
| general                                                                              | Ex-Design | 2-wire plug connection                                                                                                                                        | 2-wire plug connection                                                                                                                               |  |  |  |
| Plug with screened cable                                                             | Standard  | 4-pole standard plug, plug length = 25 mm, yellow cable                                                                                                       | 4-pole standard plug, plug length = 25 mm, yellow cable                                                                                              |  |  |  |
|                                                                                      | Ex-Design | dto., blue cable                                                                                                                                              | dto., blue cable                                                                                                                                     |  |  |  |
| Number of signal outputs                                                             |           | 1 or 2 (when 2 single pick-ups are used in one flow meter body)                                                                                               | 1 or 2 (the 2 signal pick-ups are<br>evaluated by the internal amplifier<br>and are connected to 1 output)                                           |  |  |  |
| Signal resolution per conveyed tooth gap volume (measurement volume V <sub>m</sub> ) |           | 1 impulse or 2 impulses by 2 single<br>signal pick-ups with a phase offset <sup>1</sup> of<br>90° and different carrier frequencies<br>in one flow meter body | 1 impulse in series VE Optional 2 impulses (signal doubling) or 4 impulses (signal quadrupling) codable with internal jumpers 1 impulse in series VE |  |  |  |

### 1 Explanation of series VT ...

If detection of the direction of flow and high signal resolution with additional external circuitry is necessary, 2 single pick-ups are used in one flow meter body,

which are arranged with a mechanical offset of  $90^{\circ}$  with regard to the tooth flank sequence

### SIGNAL PICK-UPS FOR VHM FLOW METERS

| Technical data part 2                 |            | Single pick-ups in<br>standard design<br>Deviations from Ex-design                                                                     | Double pick-ups in<br>standard design<br>Deviations from Ex-design                                                                                                                                  |
|---------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal output voltage U <sub>DC</sub> | Standard   | 7-30 V (depending on the supply voltage and loading of the optocoupler)                                                                | 7-30 V (depending on the supply voltage and loading of the optocoupler)                                                                                                                             |
|                                       | Ex-Design  | To VSE barrier amplifier: 7.5 – 27.5 V; depending on the supply voltage                                                                | To VSE barrier amplifier: 7.5-27.5 V; depending on the supply voltage                                                                                                                               |
| Output current U <sub>DC</sub>        | Standard   | 10 mA max.<br>(for supply voltage > 16 V DC)                                                                                           | 10 mA max.<br>(for supply voltage > 16 V DC)                                                                                                                                                        |
|                                       | Ex-Design  | VSE barrier amplifier:<br>output circuit < 100 mA                                                                                      | VSE barrier amplifier:<br>output circuit < 100 mA                                                                                                                                                   |
| Signal switching f                    | requency f | 3 Hz-1.0 kHz                                                                                                                           | 3 Hz-1.0 kHz                                                                                                                                                                                        |
| Signal output circuit                 | Standard   | Optocoupler transistor with series resistance $R = 1.2 \text{ K} \Omega$ galvanic isolation from the supply voltage potential          | Optocoupler transistor with series resistance R = $1.2~{\rm K}~\Omega$ galvanic isolation from the supply voltage potential                                                                         |
|                                       | Ex-Design  | VSE barrier amplifier: output short-circuit resistant – see data sheet.  Connection to the barrier amplifier supply voltage potential. | VSE barrier amplifier: output short-circuit resistant – see data sheet.  Connection to the barrier amplifier supply voltage potential.                                                              |
| Signal switching polarity             | Standard   | Optional NPN or PNP selectable by external connections                                                                                 | Optional NPN or PNP selectable by external connections                                                                                                                                              |
|                                       | Ex-Design  | PNP output signal via VSE barrier amplifier, i.e. connection to the barrier amplifier supply voltage potential                         | PNP output signal via VSE barrier amplifier, i.e. connection to the barrier amplifier supply voltage potential                                                                                      |
| Signal pulse duty factor (p.d.f.)     |            | p.d.f. = 1:1                                                                                                                           | Coding for signal doubling p.d.f. = 1:1  Coding for signal quadrupling: p.d.f. = dependent on the flow speed (impulse frequency) by which the impulse remains constant.  (Series VE*, p.d.f. = 1:1) |

### \* Explanation for series VE...

If a single pick-up (1 impulse per conveyed tooth gap volume) cannot be used in an application because of the length of its body (115 mm), a modified double pick-up of series VE... (body length 43 mm) can

be used, which operates with only one active carrier frequency oscillator and delivers the signals as a single pick-up.

| VHM type list single and double pick-ups Preferred types |            | Single pick-ups with not earthed 0 V-potential                 |                                                                  | <b>Double pick-ups</b> with not earthed 0 V-potential                                |                                                                     |                                       |
|----------------------------------------------------------|------------|----------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|
|                                                          |            | Single channel<br>pick-ups with<br>normal carrier<br>frequency | Singel channel<br>pick-ups with<br>modified<br>carrier frequency | Double channel<br>pick-ups with<br>(impulses <sup>x2</sup> /impulses <sup>x4</sup> ) | Double channel<br>pick-ups<br>modified<br>(impulses <sup>x1</sup> ) |                                       |
| Available VS-connecting <sup>1</sup>                     |            |                                                                | 4-wire connection with U/I-limiting                              | 4-wire connection with U/I-limiting                                                  | 4-wire connection with U/I-limiting                                 | 4-wire connection with U / I-limiting |
|                                                          | Ex-Design  | Size                                                           | 2-wire connection with U/I-limiting                              | 2-wire connection with U/I-limiting                                                  | 2-wire connection with U/I-limiting                                 | 2-wire connection with U / I-limiting |
| Plug with                                                | Standard 0 | 01                                                             | VIII-1S10/N                                                      | VTII-1S10/N                                                                          | VDII-1S10/N                                                         | VEII-1S10/N                           |
| yellow cable <sup>2</sup>                                |            | 02                                                             | VIII-2S10/N*                                                     | VTII-2S10/N*                                                                         | VDII-1810/N*                                                        | VEII-2S10/N                           |
| 5/10/15/20 m                                             |            | 03                                                             | VIII-2S10/N                                                      | VTII-2S10/N                                                                          | VDII-3S10/N                                                         | VEII-3S10/N                           |
| Plug with                                                | Ex-Design  | 01                                                             | VILI-1 S10/Ex                                                    | VTLI-1S10/Ex                                                                         | VDLI-3S10/N                                                         | VELI-1S10/Ex                          |
| blue cable <sup>2</sup>                                  |            | 02                                                             | VILI-2S10/Ex*                                                    | VTLI-2S10/Ex*                                                                        | VDLI-2S10/Ex*                                                       | VELI-2S10/Ex                          |
| 5/10/15/20 m                                             |            | 03                                                             | VILI-2S10/Ex                                                     | VTLI-2S10/Ex                                                                         | VDLI-3S10/Ex                                                        | VELI-3S10/Ex                          |

<sup>1</sup> The connecting cables are open at one end, but can be delivered with a second plug on request.

<sup>2</sup> Other cable lengths are available on request.

<sup>\*</sup> Stock types, other types on request.

### SIGNAL PICK-UPS WITH OPTICAL FIBRE TECHNOLOGY FOR VHM FLOW METERS

| Technical data part 3          | Double pick-ups with fibre optic output VDB                               | Fibre optic receiver VUM                      |
|--------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|
| Signal pick-ups per flow       | 2                                                                         | Volume impulse / fault signal                 |
| meter body                     |                                                                           | Signal voltage U <sub>DC</sub> : 9-30 V       |
| Detection of the flow          | No                                                                        | (depending on the supply voltage and          |
| direction                      |                                                                           | loading of the signal output circuit)         |
|                                |                                                                           | Signal current I <sub>DC</sub> : 10 mA max.   |
|                                |                                                                           | (for supply voltages > 16 V DC)               |
| Body data                      |                                                                           | . ,,,                                         |
| Dimensions                     | Ø = 78 mm; height = 62 mm; overall                                        | Overall length with optical fibre and plug    |
|                                | height                                                                    | connector = 98 mm; L = 64 mm;                 |
|                                | with sensor 72 mm                                                         | B = 58  mm; H = 37  mm                        |
|                                |                                                                           | Mounting construction: 2 screws M4 or         |
|                                |                                                                           | installation rail snap-in mounting DIN 50022  |
| Protection type                | IP 54                                                                     | IP 54                                         |
| Material                       | Anodised aluminium; coil holder in stainless steel                        | Aluminium                                     |
| Weight                         | 438 g                                                                     | 218 g                                         |
| Medium temperature             | -20 +60° C / -4 +140°F                                                    | 210 g                                         |
| Ambient temperature            | -20 +50°C / -4 +122°F                                                     | -25 +60°C / -13 +140°F                        |
| Ex-approval                    | According to Conformity certificate                                       | LED indicators:                               |
| Ex-approval                    | BUS 12 ATEX E 058X                                                        | LED green: ready                              |
| Ex-designation                 | (Ex) II 16 Ex ia op is IIC T4 6a                                          | LED green. reddy  LED red: transmission error |
| Associated fibre optic         | VUMI-O                                                                    | Volume impulse/fault signal                   |
| receiver                       | VOMI-O                                                                    | Signal switching polarity: PNP or NPN         |
| receiver                       |                                                                           | programmable by 2 coding jumpers              |
| Installation site of the       | Outside the Ex-area (or high voltage area)                                | Volume impulse                                |
| fibre                          | wall-mounted or in an electrical cabinet                                  | pulse duty factor (PP)                        |
| optic receiver                 | with screw or installation rail mounting DIN 50022 depending on the type. | PP = 1:1                                      |
| Electrical supply              | By internal, sealed lithium battery                                       | Unregulated power supply with                 |
| ,                              | (use only original parts)                                                 | smoothing capacitor                           |
| Supply voltage U <sub>DC</sub> | Battery 3.6 V/16.5 Ah with integrated                                     | 9-30 V                                        |
|                                | series                                                                    |                                               |
|                                | resistor for Ex-applications                                              |                                               |
| Operating                      | 2 years                                                                   | Supply current I DC 8 mA                      |
| time                           | (integrated energy saving in stand-by mode)                               |                                               |

| Technical data part 4                                                                      | Double pick-ups with fibre optic output VDB                                                                                                                | Fibre optic receiver                                              |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Optical fibre                                                                              | Silicone-free plastic optical fibre cable with double sheathing                                                                                            | Optical fibre signal input Signal detection: by fibre optic input |
| Stress relief                                                                              | Aramide fibres                                                                                                                                             | transistor                                                        |
| Outer sheath                                                                               | Polyurethane red                                                                                                                                           |                                                                   |
| Outer dimensions                                                                           | 3.5 mm +/- 0.2                                                                                                                                             | Signal type: Digital optical signals from                         |
| Bending radius                                                                             | > 10 mm short-term; > 50 mm permanent                                                                                                                      | double pick-up                                                    |
| Optical fibre connector                                                                    | Cable gland PG 7, length = 20 mm                                                                                                                           | (flow meter signals; monitor signal in                            |
| Standard cable lengths                                                                     | 5/10/15/20 m                                                                                                                                               | stand-by; battery status signals)                                 |
| Number of signal outputs                                                                   | 1, includes information on the flow meter output impulses and status signals                                                                               | 2 volume impulses (flow meter) fault signals                      |
| Signal resolution per<br>conveyed tooth<br>gap volume<br>(measured volume V <sub>m</sub> ) | 2 impulses (signal doubling)                                                                                                                               | 2 impulses (signal doubling)                                      |
| Switching frequency f                                                                      | 3 Hz-1.0 kHz                                                                                                                                               | 3 Hz-1.0 kHz                                                      |
| Volume impulses / fault signals - signal output circuit                                    | Fibre optic output diode: Digital optical signals to the fibre optic receiver (volume sensor signals; monitor signals in stand-by; battery status signals) | One transistor each with series resistor R = 1.2 k $\Omega$       |

### **VHM - TYPE LIST OPTICAL FIBRE TECHNOLOGY**

| VHM                 | Size | Double pick-up with fibre optic output |
|---------------------|------|----------------------------------------|
| Standard            | 01   | VDBI-1K10/N                            |
|                     | 02   | VDBI-2K10/N                            |
|                     | 03   | VDBI-3K10/N*                           |
| Ex-Design           | 01   | VDBI-1K10/EX                           |
|                     | 02   | VDBI-2K10/EX                           |
|                     | 03   | VDBI-3K10/EX*                          |
| *Size 03 on request |      |                                        |

| Accessories                                                          | for double pick-up |                 |                                   |  |
|----------------------------------------------------------------------|--------------------|-----------------|-----------------------------------|--|
| VDBI-battery = sealed lithium battery for all double signal pick-ups |                    |                 |                                   |  |
| LWL cable = plastic optical fibre cable                              |                    |                 |                                   |  |
| LWL cable                                                            | 5 m                | LWL cable       | 20 m*                             |  |
| LWL cable                                                            | 10 m               | *other length o | of optical fibre cable on request |  |
| LWL cable                                                            | 15 m               |                 |                                   |  |

| Fibre optic receiver with plug connections |                                    |             |  |  |
|--------------------------------------------|------------------------------------|-------------|--|--|
| Body design                                | Screw mounting                     | VUMI-0S00/N |  |  |
|                                            | Installation rail snap-in mounting | VUMI-0S01/N |  |  |

# PERFORMANCE CHARACTERISTICS OF THE FAULT SIGNAL OUTPUT

If a low battery state is signalled, the green LED "Ready" extinguishes and the fault signal output becomes active, operation of the system remains possible for a certain time.

The green LED "Ready" is switched on and the fault signal output is reset automatically when a new battery has been installed in the signal pick-up body.

The fault signal output also becomes active on the following transmission errors of the optical fibre, by which the red LED "transmission error" also lights:

- A. Interruption of the optical fibre
- B. Incorrect connection
- C. Weak optical signal

### **FLOW METER SELECTION**

The correct choice (interpretation) of the type and size of flow meter is essential for a trouble-free and safe operation. Due to the large number of different applications and flow meter models, the technical data in the VSE catalogues are of a general nature. Certain characteristics of the devices depend on type, size and measuring range as well as the liquid to be measured. Please consult VSE for an exact choice of flow meter.

Special designs are available on request

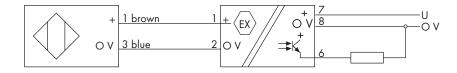
### BARRIER AMPLIFIER "MK 13-P-EX 0/24 V DC/K15" FOR VHM FLOW METERS

VSE provides the barrier amplifier type "MK 13-P-Ex 0/24 V DC/K15" for the application of VHM flow meters in areas with explosion hazards. This operates in conjunction with the pick-up systems of VHM flow meters.

The barrier amplifier has an intrinsically safe control circuit and is equipped with galvanic isolation between the control and output circuits to the supply. It contains a pulse-switching, short-circuit resistant transistor output and is connected with screw terminals. The amplifier is installed in a plastic housing and is fitted with a snap-in mounting for attachment to an installation rail.

The barrier amplifier must be installed outside the Ex-area in an electrical cabinet or terminal box. The intrinsically safe control lines must be laid and marked according to the design specifications of VDE 0165.

VIL.-.../EX; VTL.-.../EX


Single pick-up with plug connection

**VDL.-.../EX; VEL.-.../EX** 

Double pick-up with plug connection

### FLOW METER VHM...

### **BARRIER AMPLIFIER**



## EXTERNAL INDUCTORS / CAPACITANCE

### TECHNICAL DATA OF THE BARRIER AMPLIFIER MK 13-P-EX 0/24 V DC/K15

Galvanic isolation of the control and output circuits

Ex-approval according to conformity certificate PTB06 ATEX 2025

Control circuits intrinsically safe: II (1) GD [Ex ia] IIC

| Input circuit       |                                                    | Output circuit         |                                     | Operating values                                    |                    |
|---------------------|----------------------------------------------------|------------------------|-------------------------------------|-----------------------------------------------------|--------------------|
| Sensor<br>voltage   | 8.2 V                                              | Signal output          | Transistor output PNP-switched      | Supply voltage                                      | 10-30 V<br>DC      |
| Sensor<br>current   | < 2.7 mA > 3.7 mA<br>(modulated current<br>signal) | Voltage drop           | < 2.5 V                             | Current consump-<br>tion short-circuit<br>resistant | < 20 mA<br>< 31 mA |
| Switching threshold | Low = < 2.7 mA<br>High = > 3.7 mA                  | Switching current      | < 100 mA<br>Short-circuit resistant |                                                     |                    |
| Hysteresis          | > 0.2 mA                                           | Switching<br>frequency | < 3 kHz                             |                                                     |                    |

| Body                 |                                                        |
|----------------------|--------------------------------------------------------|
| Dimensions           | Length 89 mm, width 18 mm, height 71 mm                |
| Material             | Polycarbonate / ABS                                    |
| Inflammability class | V-O according to UL 94                                 |
| Mounting             | Installation rail (DIN 50022) or<br>G-rail (DIN 50035) |
| Temperature range    | -25 +70°C / -13 +158°F                                 |
| Protection range     | (DIN 40050) IP 20                                      |
| Weight               | 70 g                                                   |

| LED indicators   |            |  |  |
|------------------|------------|--|--|
| Ready            | Green LED  |  |  |
| Switching status | Yellow LED |  |  |





# GEAR FLOW METER VSE EF ECOFLOW

# ALUMINIUM FLOW METER VSE EF ECOFLOW SERIES

Based on the same meshing gear principle as the VSE series VSI and VHM, the VSE EF ecoflow sensor measures viscous media, however as in-line-device.

An integrated, magnetoresistive pick-up with PNP or NPN-switching output produces one impulse per tooth with a value of:

| Volume / Impulse    | Size    |
|---------------------|---------|
| $0.04 \text{ cm}^3$ | EF 0.04 |
| $0.1 \text{ cm}^3$  | EF 0.1  |
| $0.4 \text{ cm}^3$  | EF 0.4  |
| $2 \text{ cm}^3$    | EF 2    |
| 4 cm <sup>3</sup>   | EF 4    |

### Optional:

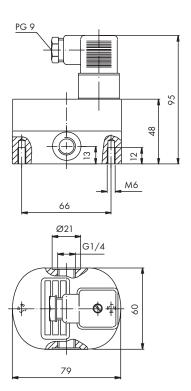
LCD flow display with analogue output and two limit values, mounted on the flow meter.

The impulse frequency is proportional to the revolutions of the gear wheels, which are driven by the volume stream.

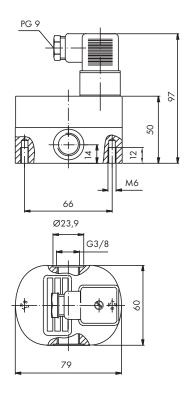
The impulse processing is made by means of VSE-made or any other electronical readout. The VSE EF ecoflow is a economical alternative to the VSI series for applications that require lower accuracy, temperature and pressure.

### **TECHNICAL DATA**

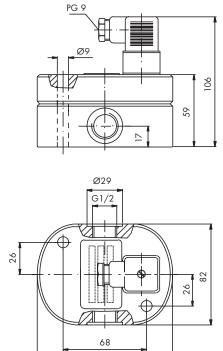
|                                    | EF 0.04                | EF 0.1       | EF 0.4      | EF 2            | EF 4       |  |
|------------------------------------|------------------------|--------------|-------------|-----------------|------------|--|
| Flow range I/min                   | 0.05 4                 | 0.1 10       | 0.2 30      | 0.5 70          | 3.0 150    |  |
| Flow volume cm <sup>3</sup> /pulse | 0.04                   | 0.1          | 0.4         | 2.0             | 4.0        |  |
| Frequency (Hz)                     | 20.8 1,666.7           | 16.7 1,666.7 | 8.3 1,250.0 | 4.2 583.3       | 12.5 625.0 |  |
| K-Factor (pulse/I)                 | appr. 25,000           | appr. 10,000 | appr. 2,500 | appr. 500       | appr. 250  |  |
| Accuracy at 21 mm <sup>2</sup> /s  | 2%                     | 2%           | 2%          | 2%              | 3 %        |  |
| Viscosity range mm <sup>2</sup> /s | 2 2,000                | 2 2,000      | 2 5,000     | 2 <i>7</i> ,000 | 2 10,000   |  |
| Max. operating pressure            | 200 bar (2900 psi)     |              |             |                 |            |  |
| Medium temperatur                  | 0°C +80°C (32°F 176°F) |              |             |                 |            |  |
| Mounting position                  | unrestricted           |              |             |                 |            |  |
| Filtering                          | 20 µm                  | 20 µm        | 50 µm       | 50 µm           | 100 µm     |  |
| Side pipe connection               | G 1/4"                 | G 3/8"       | G 1/2"      | G 3/4"          | G 1"       |  |
| Weight                             | 0.62 kg                | 0.70 kg      | 1.5 kg      | 1.7 kg          | 5.24 kg    |  |


### **MATERIALS**

| Body        | Aluminium                                                                              |
|-------------|----------------------------------------------------------------------------------------|
| Gear wheels | Stainless steel 1.4122, (DIN EN 1563)                                                  |
| Bearing     | Stainless steel ball bearing, DU sleeve bearing, ball bearing or bronze sleeve bearing |
| Seals       | FPM (standard), NBR, PTFE or EPDM (optional)                                           |

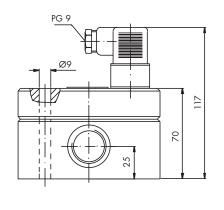

# GEAR FLOW METER VSE EF ECOFLOW

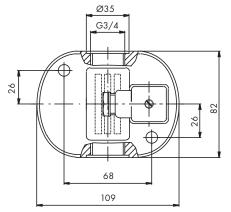
### **DIMENSIONS OF FLOW METERS**


### **EF 0.04**



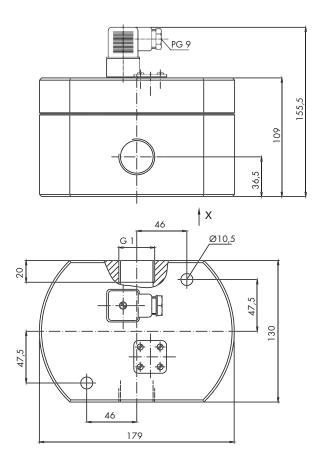
**EF 0.1** 



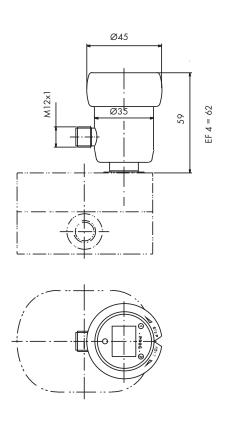


**EF 0.4** 



109


EF 2





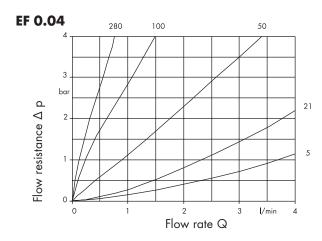

### **DIMENSIONS OF FLOW METERS**

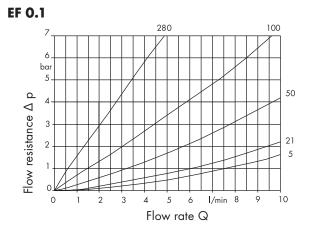
### EF 4

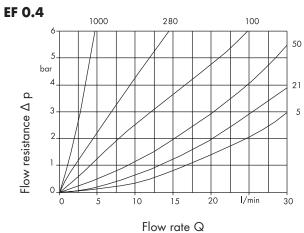


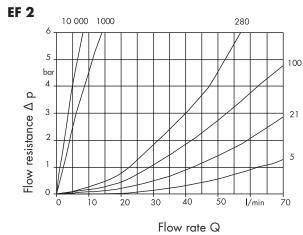
### **LCD FLOW DISPLAY**

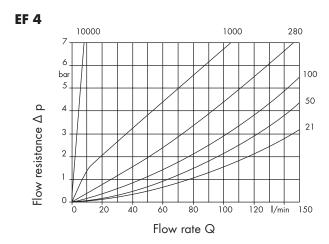




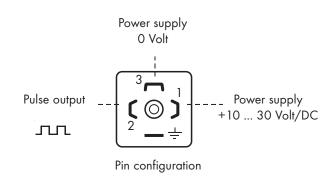


## **FLOW RESPONSE CURVES**







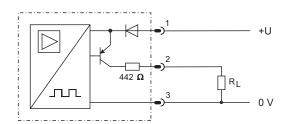




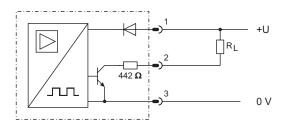

Viscosity: mm<sup>2</sup>/s

For trouble-free and safe operation of the flow meters, a correct selection of type and size is decisive. Due to the great number of different applications and flow meter versions, the technical data in the VSE catalogues are of general character. Certain characteristics of the devices depend on type, size and measuring range as well as on the medium to be measured. For an exact flow meter selection please contact VSE.

# STANDARD: VSE EF ECOFLOW FLOW METER, WITH PULSE OUTPUT







### **DESCRIPTION**

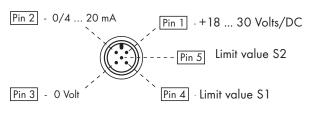
The rotation of the flow meter gear wheels is sensed by a non-contact magnetoresistive pickup, amplified and emitted as pulses. The passing of each individual gear tooth produces a pulse corresponding to a precise positively displaced measured volume. The pulse output can be produced as PNP or NPN signals. The frequency is proportional to the momentary flow.

# **CONNECTION DIAGRAM**



Pulse output - PNP version



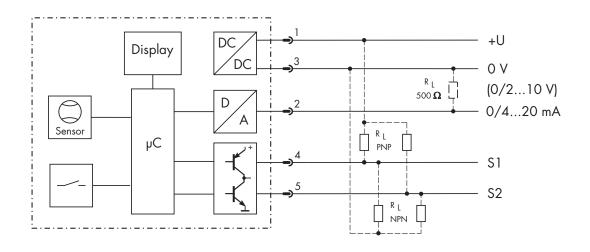

Pulse output - NPN version

| Power supply          | 10 30 Volts/DC                                                                                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power consumption     | 18 mA (no load)                                                                                                                                                 |
| Pulse output          | PNP or NPN switching, 20 mA max. Short-circuit-proof (internal protective resistor 442 $\Omega$ ) Square wave signal, 0 1667 Hz, depending upon flow meter size |
| Temperature range     | 0°C +80°C (32°F 176°F)                                                                                                                                          |
| Electrical connection | Square connector according to DIN EN 175301-803-A<br>Cable gland Pg9, Cable diameter 6 – 8 mm, Wire gauge max. 1.5 mm²                                          |
| Protection class      | IP 65 (with mounted connection plug)                                                                                                                            |

### **OPTION: LCD FLOW DISPLAY FOR VSE EF ECOFLOW**

#### WITH ANALOGUE OUTPUT AND TWO LIMIT VALUES

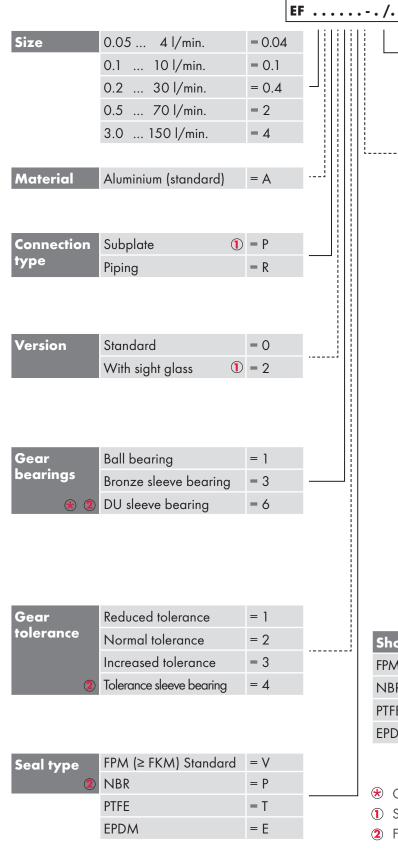





Pin configuration

### **DESCRIPTION**

The programmable flow display evaluates the pulses from the magnetoresistive pickup and shows the chosen units on a backlit LCD-display. Alarm and condition reports are signalled in the display by a red LED with additional text. The measured values are transmitted by means of an analogue output, 0 or 4 up to 20 mA, and 0 or 2 up to 10 Volt by means of a resistor (500 Ohm). The limit values are signalled through two transistor switching outputs.


#### **CONNECTION DIAGRAM**



| Graphic display       | LCD display, 4-digit with backlit;<br>shows value, dimension and dialogue-message;<br>red, flashing LED indicator                                                                                          |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Analogue output       | 0 or 4 20 mA; 12 bit A/D converter (0 or 2 10 Volt, with external 500 Ω resistor)                                                                                                                          |  |  |  |  |  |
| Switch points         | S1 and S2; Transistor output 30 V/100 mA max. Push-pull output, PNP or NPN selectable with external connection Short-circuit proof and reverse-polarity proof Hysteresis adjustable in value and direction |  |  |  |  |  |
| Power supply          | 18 30 Volt DC/<1 Watt                                                                                                                                                                                      |  |  |  |  |  |
| Temperature range     | 0°C +70°C (32°F 158°F)                                                                                                                                                                                     |  |  |  |  |  |
| Electrical connection | Round connector M12 x 1, 5-pole                                                                                                                                                                            |  |  |  |  |  |
| Protection class      | IP 62                                                                                                                                                                                                      |  |  |  |  |  |
| Material              | Stainless steel 1.4305; mineral glass screen POM-programming ring; FPM-seals                                                                                                                               |  |  |  |  |  |
| Accessory             | PUR-connection, cable 5-pole shielded, 5 or 10 m long alternative: VSE standard plug, 5-pole                                                                                                               |  |  |  |  |  |

Customer specific designs on request

### **TYPE CODE**



|  | = Series | (factory preset) 1 |  |  |  |
|--|----------|--------------------|--|--|--|
|  |          |                    |  |  |  |
|  |          |                    |  |  |  |
|  |          |                    |  |  |  |
|  | PNP      | = Pulse output PNP |  |  |  |
|  | NPN      | = Pulse output NPN |  |  |  |
|  | LCD      | = LCD-Flow Display |  |  |  |
|  |          |                    |  |  |  |

| Short term  | explanation to type of seals            |
|-------------|-----------------------------------------|
| FPM (≧ FKM) | = Fluorine carbon rubber O-ring         |
| NBR         | = Acrylnitrile butadiene rubber O-ring  |
| PTFE        | = Polytetrafluorethylene rubber O-ring  |
| EPDM        | = Ethylen propylene diene rubber O-ring |

- ♦ Other type no. = special design
- Special design upon request
- 2 Factory preset to the application





#### **FLOW METERS SERIES VTR**

Turbine flow meters are precise and reliable measuring instruments, designed for a wide range of applications. Even under difficult application conditions in the oil, petrochemical and chemical industries as well as in other industrial sectors, the sensors of the VTR series can be installed. The range of nominal widths spans from 10 mm to 500 mm for the flange version as well as from 10 mm to 50 mm for the version with threaded connection. All VTR flow meters are individ-ually calibrated. A wide range of electronic evaluation and display devices is available.

- Large choice of nominal widths between DN 10 and DN 500
- Designed completely in stainless steel
- Wide temperature and pressure range
- Large measurement range from 110 l/h to 4,500 m³/h

#### **FUNCTIONING PRINCIPLE**

The basic system of the VTR Series consists of a rotor, the housing and a measurement pick-up. The flow of the fluid sets the rotor in motion. If the magnetic field lines of the pick-up system are intersected by the rotor blades, the movement of the rotor is detected. Due to the specific internal diameter, the revolution of the turbine is directly proportional to the flow. The turbine revolution is detected by an external sensor. The output signal is a flow-proportional frequency (pulse sequence). The further processing of the signal can be carried out by a separate evaluation and display device.

## **SPECIFICATIONS**

| Response time          | < 50 ms for sensors up to DN 40 – longer response times for larger nominal diameters and therefore larger rotor mass                                                      |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Filter requirements    | For safe operation of the flow meter, we suggest filtration requirements in order to avoid damages due to contamination. We would be pleased to provide you with details. |  |  |  |  |  |
| Cable connections      | A 4- or 2-connection shielded cable with PUR insulation is recommended. Cross-section: 0.5 mm <sup>2</sup>                                                                |  |  |  |  |  |
| Frequency              | 3 up to 1,000 Hz                                                                                                                                                          |  |  |  |  |  |
| Electrical connection  | VSE standard plug                                                                                                                                                         |  |  |  |  |  |
| Mechanical connections | Flange appropriate ANSI or DIN; other specifications on request Threading: up to DN 50, connections with NPT or pipe threads (BSP)                                        |  |  |  |  |  |
| Maximum pressure       | Threaded connections: maximum 250 bar; Flange connections: according to flange specifications                                                                             |  |  |  |  |  |
| Linearity              | +/- 0.5 %                                                                                                                                                                 |  |  |  |  |  |
| Repeatability          | +/- 0.05 %                                                                                                                                                                |  |  |  |  |  |
| Pressure drop          | 280 mbar at 100 % of the measurement range (density 1, viscosity 1 cSt)                                                                                                   |  |  |  |  |  |
| Temperature range      | - 40°C to + 120°C (- 40°F to + 248°F)                                                                                                                                     |  |  |  |  |  |

All values are valid for viscosities up to 5 cSt. Higher viscosities on request.



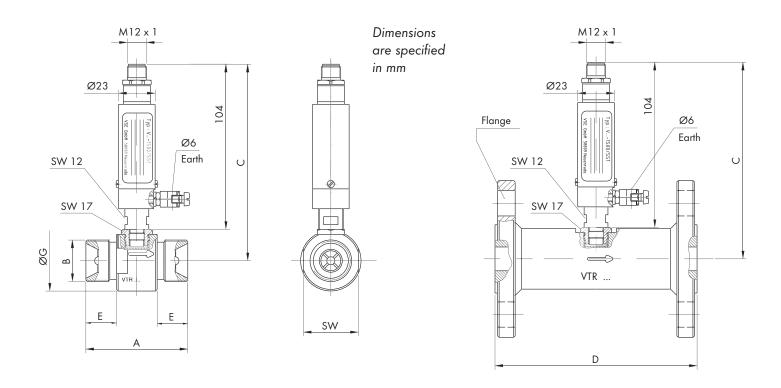


**DN 10-50**Outer thread G 3/8 - G 2 or NPT 3/8" - NPT 2"

**DN 10-500**Flange design according to DIN,
British Standard or ASA 150 RF

# **MATERIALS**

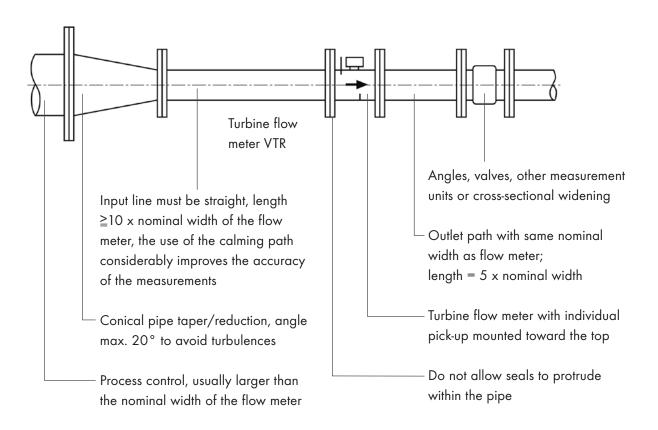
Housing: Stainless steel 1.4301, optional 1.4401 Flange: Steel 1.0432, optional stainless steel


1.4301 or 1.4401

Rotor: Up to VTR 1020: stainless steel 1.4016,

VTR 1025 and higher: stainless steel with 1.75 % to 2.25 % molybdenum

Bearings: Tungsten-Carbide Ball bearing: Stainless steel


# **DIMENSIONS**



| Α   | E    | В       | ØG | SW   | С   | ТҮРЕ       | DN | D   | m³/h       | l/min.     | lmp./ l |
|-----|------|---------|----|------|-----|------------|----|-----|------------|------------|---------|
| 62  | 19   | G 1/2   | 33 | 30   | 121 | VTR 1010   | 10 | _   | 0.11 - 1.1 | 1.8 - 18   | 3000    |
| 64  | 19   | G 3/4   | 38 | 35   | 123 | VTR 1015-S | 15 | 127 | 0.22 - 2.2 | 3.6 - 36   | 1700    |
| 64  | 19   | G 3/4   | 38 | 35   | 123 | VTR 1015   | 15 | 127 | 0.4 - 4    | 6.7 - 67   | 1100    |
| 83  | 22   | G 3/4   | 41 | 38   | 125 | VTR 1020   | 20 | 140 | 0.8 - 8    | 13 - 130   | 400     |
| 89  | 23   | G 1     | 47 | 44   | 128 | VTR 1025   | 25 | 152 | 1.6 - 16   | 27 - 270   | 190     |
| 115 | 28   | G 1 1/2 | 60 | 52.5 | 134 | VTR 1040   | 40 | 178 | 3.4 - 34   | 57 - 570   | 60      |
| 133 | 29.5 | G 2     | 70 | -    | 139 | VTR 1050   | 50 | 197 | 6.8 - 68   | 113 - 1130 | 24      |

Further sizes and versions are available on request. Each turbine flow meter is individually calibrated. This individual pulse count/I (K-Factor) is indicated on the type plate.

### INSTALLATION OF THE VTR FLOW METER





E Fluid Technology (Shanghai) Co., Ltd. Unit 104, Building 6, No. 650 Shunqing Lu, Shanghai Postal code: 201612 China

Phone +86 21 64 77 92 06 info@e-fluid.com
www.e-fluid.com



